"Matematiksel formüller" sayfasının sürümleri arasındaki fark

turkmathviki sitesinden
Atla: kullan, ara
(Kodlama)
 
(Bir kullanıcı tarafından yapılan 22 ara revizyon gösterilmiyor)
1. satır: 1. satır:
[[w:MediaWiki|MediaWiki]] yazılımı matematiksel ifadelerin biçimlendirilmesinde LaTeX ve AMSLaTeX yazılımlarını içeren TeX yazılımını kullanmaktadır. Bazı matematiksel formüller kişisel tercihlere bağlı olarak PNG, bazıları ise HTML olarak gözükebilir.
+
== Kodlama ==
 +
Matematiksel formüller <nowiki><math>...</math></nowiki> kodları arasına klasik LaTeX komutları ile yazılır.
  
 +
== Örnek ==
 +
<nowiki><math>x\in A</math></nowiki> yazdığınızda görüntü <math>x\in A</math> olur.
  
UNIQ0a986f19d8118a5a-item-1285--QINU
+
== Daha çok örnek için ==
__TOC__
+
[http://tr.wikipedia.org/wiki/Yard%C4%B1m:Matematiksel_form%C3%BCller Matematiksel Formüller için tıklayınız]
  
==Kodlama==
 
Matematiksel kodlar UNIQ0a986f19d8118a5a-code-00000506-QINU arasına yazılır.
 
Düzenleme yapılan sayfadaki araç kutusunda bunun için bir buton vardır. HTML'de olduğu gibi Tex'de de bir taneden fazla verilen boşluklar ve boş satırlar dikkate alınmaz. Tex kodları doğru yazılmadıkları zaman hata uyarısı verirler. Bu nedenle kodları doğru yazdığınızdan emin olmalısınız.
 
 
UNIQ0a986f19d8118a5a-item-1287--QINU
 
==Sunum==
 
 
UNIQ0a986f19d8118a5a-item-1288--QINU
 
It should be pointed out that most of these shortcomings have been addressed by [[m:Help talk:Formula#Maynard_Handley.27s_suggestions|Maynard Handley]], but have not been released yet.
 
 
The UNIQ0a986f19d8118a5a-code-00000509-QINU attribute of the PNG images (the text that is displayed if your browser can't display images; Internet Explorer shows it up in the hover box) is the wikitext that produced them, excluding the UNIQ0a986f19d8118a5a-code-0000050A-QINU and UNIQ0a986f19d8118a5a-code-0000050B-QINU.
 
 
Apart from function and operator names, as is customary in mathematics for variables, letters are in italics; digits are not. For other text, (like variable labels) to avoid being rendered in italics like variables, use UNIQ0a986f19d8118a5a-code-0000050C-QINU or UNIQ0a986f19d8118a5a-code-0000050D-QINU. For example,  UNIQ0a986f19d8118a5a-code-0000050E-QINU gives UNIQ0a986f19d8118a5a-math-0000050F-QINU.
 
 
==TeX ve HTML==
 
Before introducing TeX markup for producing special characters, it should be noted that, as this comparison table shows, sometimes similar results can be achieved in HTML (see [[Help:Special characters]]).
 
 
{| border="2" cellpadding="4" cellspacing="0" style="margin: 1em 1em 1em 0; background: #f9f9f9; border: 1px #aaa solid; border-collapse: collapse;"
 
|-
 
! TeX kodlaması
 
! TeX çıktısı
 
! HTML kodlaması
 
! HTML çıktısı
 
|-
 
| UNIQ0a986f19d8118a5a-code-00000510-QINU
 
| UNIQ0a986f19d8118a5a-math-00000511-QINU
 
| UNIQ0a986f19d8118a5a-code-00000512-QINU
 
| &alpha;
 
|-
 
| UNIQ0a986f19d8118a5a-code-00000513-QINU
 
| UNIQ0a986f19d8118a5a-math-00000514-QINU
 
| UNIQ0a986f19d8118a5a-code-00000515-QINU
 
| &radic;2
 
|-
 
| UNIQ0a986f19d8118a5a-code-00000516-QINU
 
| UNIQ0a986f19d8118a5a-math-00000517-QINU
 
| UNIQ0a986f19d8118a5a-code-00000518-QINU
 
| &radic;<span style="text-decoration: overline;">1&minus;''e''&sup2;</div>
 
|}
 
 
 
UNIQ0a986f19d8118a5a-item-1305--QINUas follows.
 
 
===HTML'nin avantajları===
 
#HTML ile yazılan formüller her zaman yazının bütünü gibi durur.
 
#HTML ile yazılan formüllerde, sayfanın arka planı, font türü, internet sunucusunun ayarları aktif olarak çalışır.
 
#HTML kullanarak yazılan formüller sayfa açılım hızını arttırır.
 
 
 
===TeX kullanımının avantajları===
 
#Tex kalite bakımından HTML'den ileri bir yazılımdır.
 
#Tex yazılımında "UNIQ0a986f19d8118a5a-code-0000051A-QINU" kodlaması matematiksel değişken anlamına gelir. Fakat HTML'de "UNIQ0a986f19d8118a5a-code-0000051B-QINU" kodlaması herhangi bir anlama gelebilir. Bu yüzden bilgiler daha kolay kaybolabilir.
 
#TeX yazılımı özellikle formül yazımı için tasarlanmıştır. Bu nedenle daha kolay ve daha işlevseldir.
 
# One consequence of point 1 is that TeX can be transformed into HTML, but not vice-versa. This means that on the server side we can always transform a formula, based on its complexity and location within the text, user preferences, type of browser, etc. Therefore, where possible, all the benefits of HTML can be retained, together with the benefits of TeX. It's true that the current situation is not ideal, but that's not a good reason to drop information/contents. It's more a reason to [[#Bug_reports|help improve the situation]].
 
#Diğer önemli husus TeX [[w:MathML|MathML]] kodlamasına, bu kodlamayı destekleyen sunucular tarafından çevirlebilmektedir.
 
#TeX komutlarını kullanırken sunucu desteğine ya da diğer teknik desteklere ihtiyaç duymazsınız. Bu kodlamanın işlevselliğini serverler sağlamaktadır. Bu nedenle her türlü sunucuda, rahatlıkla yazıp kullanabileceğiniz bir kodlama türüdür.
 
 
== Fonksiyonlar, semboller, özel karakterler ==
 
 
UNIQ0a986f19d8118a5a-item-1308--QINU{| class="wikitable"
 
! colspan="2" |<h3>Aksanlar/Vurgular</h3>
 
|-
 
|UNIQ0a986f19d8118a5a-code-0000051D-QINU
 
|UNIQ0a986f19d8118a5a-math-0000051E-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-0000051F-QINU
 
|UNIQ0a986f19d8118a5a-math-00000520-QINU
 
|-
 
! colspan="2" |
 
 
<h3>Standart fonksiyonlar</h3>
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000521-QINU
 
|UNIQ0a986f19d8118a5a-math-00000522-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000523-QINU
 
|UNIQ0a986f19d8118a5a-math-00000524-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000525-QINU
 
|UNIQ0a986f19d8118a5a-math-00000526-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000527-QINU
 
|UNIQ0a986f19d8118a5a-math-00000528-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000529-QINU
 
|UNIQ0a986f19d8118a5a-math-0000052A-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-0000052B-QINU
 
|UNIQ0a986f19d8118a5a-math-0000052C-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-0000052D-QINU
 
|UNIQ0a986f19d8118a5a-math-0000052E-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-0000052F-QINU
 
|UNIQ0a986f19d8118a5a-math-00000530-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000531-QINU
 
|UNIQ0a986f19d8118a5a-math-00000532-QINU
 
|-
 
! colspan="2" | <h3>Modüler aritmatik</h3>
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000533-QINU
 
|UNIQ0a986f19d8118a5a-math-00000534-QINU
 
|-
 
! colspan="2" |
 
 
<h3>Türevsel karakterler</h3>
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000535-QINU
 
|UNIQ0a986f19d8118a5a-math-00000536-QINU
 
|-
 
! colspan="2" |
 
 
<h3>Kümeler</h3>
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000537-QINU
 
|UNIQ0a986f19d8118a5a-math-00000538-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000539-QINU
 
|UNIQ0a986f19d8118a5a-math-0000053A-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-0000053B-QINU
 
|UNIQ0a986f19d8118a5a-math-0000053C-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-0000053D-QINU
 
|UNIQ0a986f19d8118a5a-math-0000053E-QINU
 
|-
 
! colspan="2" |
 
 
<h3>Operatör işaretler</h3>
 
|-
 
|UNIQ0a986f19d8118a5a-code-0000053F-QINU
 
|UNIQ0a986f19d8118a5a-math-00000540-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000541-QINU
 
|UNIQ0a986f19d8118a5a-math-00000542-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000543-QINU
 
|UNIQ0a986f19d8118a5a-math-00000544-QINU
 
|-
 
! colspan="2" |
 
 
<h3>Mantıksal ifadeler</h3>
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000545-QINU
 
|UNIQ0a986f19d8118a5a-math-00000546-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000547-QINU
 
|UNIQ0a986f19d8118a5a-math-00000548-QINU
 
|-
 
! colspan="2" |
 
 
<h3>Kök alma</h3>
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000549-QINU
 
|UNIQ0a986f19d8118a5a-math-0000054A-QINU
 
|-
 
! colspan="2" |
 
 
<h3>Eşitlik/Denklik/Benzerlik işaretleri</h3>
 
|-
 
|UNIQ0a986f19d8118a5a-code-0000054B-QINU
 
|UNIQ0a986f19d8118a5a-math-0000054C-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-0000054D-QINU
 
|UNIQ0a986f19d8118a5a-math-0000054E-QINU
 
|-
 
! colspan="2" |
 
 
<h3>Geometrik</h3>
 
|-
 
|UNIQ0a986f19d8118a5a-code-0000054F-QINU
 
|UNIQ0a986f19d8118a5a-math-00000550-QINU
 
|-
 
! colspan="2" |
 
 
<h3>Oklar/Bildiri ifadeleri</h3>
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000551-QINU
 
|UNIQ0a986f19d8118a5a-math-00000552-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000553-QINU
 
|UNIQ0a986f19d8118a5a-math-00000554-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000555-QINU
 
|UNIQ0a986f19d8118a5a-math-00000556-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000557-QINU
 
|UNIQ0a986f19d8118a5a-math-00000558-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000559-QINU
 
|UNIQ0a986f19d8118a5a-math-0000055A-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-0000055B-QINU
 
|UNIQ0a986f19d8118a5a-math-0000055C-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-0000055D-QINU
 
|UNIQ0a986f19d8118a5a-math-0000055E-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-0000055F-QINU
 
|UNIQ0a986f19d8118a5a-math-00000560-QINU
 
|-
 
! colspan="2" | <h3>Özel</h3>
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000561-QINU
 
|UNIQ0a986f19d8118a5a-math-00000562-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000563-QINU
 
|UNIQ0a986f19d8118a5a-math-00000564-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000565-QINU
 
|UNIQ0a986f19d8118a5a-math-00000566-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000567-QINU
 
|UNIQ0a986f19d8118a5a-math-00000568-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000569-QINU
 
|UNIQ0a986f19d8118a5a-math-0000056A-QINU
 
|-
 
! colspan="2" |
 
 
<h3>Unsorted (new stuff)</h3>
 
|-
 
|UNIQ0a986f19d8118a5a-code-0000056B-QINU
 
|UNIQ0a986f19d8118a5a-math-0000056C-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-0000056D-QINU
 
|UNIQ0a986f19d8118a5a-math-0000056E-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-0000056F-QINU
 
|UNIQ0a986f19d8118a5a-math-00000570-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000571-QINU
 
|UNIQ0a986f19d8118a5a-math-00000572-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000573-QINU
 
|UNIQ0a986f19d8118a5a-math-00000574-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000575-QINU
 
|UNIQ0a986f19d8118a5a-math-00000576-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000577-QINU
 
|UNIQ0a986f19d8118a5a-math-00000578-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000579-QINU
 
|UNIQ0a986f19d8118a5a-math-0000057A-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-0000057B-QINU
 
|UNIQ0a986f19d8118a5a-math-0000057C-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-0000057D-QINU
 
|UNIQ0a986f19d8118a5a-math-0000057E-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-0000057F-QINU
 
|UNIQ0a986f19d8118a5a-math-00000580-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000581-QINU
 
|UNIQ0a986f19d8118a5a-math-00000582-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000583-QINU
 
|UNIQ0a986f19d8118a5a-math-00000584-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000585-QINU
 
|UNIQ0a986f19d8118a5a-math-00000586-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000587-QINU
 
|UNIQ0a986f19d8118a5a-math-00000588-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000589-QINU
 
|UNIQ0a986f19d8118a5a-math-0000058A-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-0000058B-QINU
 
|UNIQ0a986f19d8118a5a-math-0000058C-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-0000058D-QINU
 
|UNIQ0a986f19d8118a5a-math-0000058E-QINU
 
|}
 
 
== Üslü ifadeler, toplam-çarpım sembolleri, türev, integral ==
 
{| border="2" cellpadding="4" cellspacing="0" style="margin: 1em 1em 1em 0; background: #f9f9f9; border: 1px #aaa solid; border-collapse: collapse;"
 
!rowspan="2"|Feature!!rowspan="2"|Syntax!!colspan="2"|How it looks rendered
 
|-
 
!HTML!!PNG
 
|-
 
|-
 
|Superscript||UNIQ0a986f19d8118a5a-code-0000058F-QINU||UNIQ0a986f19d8118a5a-math-00000590-QINU||UNIQ0a986f19d8118a5a-math-00000591-QINU
 
|-
 
|Subscript||UNIQ0a986f19d8118a5a-code-00000592-QINU||UNIQ0a986f19d8118a5a-math-00000593-QINU||UNIQ0a986f19d8118a5a-math-00000594-QINU
 
|-
 
|rowspan=2|Grouping||UNIQ0a986f19d8118a5a-code-00000595-QINU||UNIQ0a986f19d8118a5a-math-00000596-QINU||UNIQ0a986f19d8118a5a-math-00000597-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000598-QINU||UNIQ0a986f19d8118a5a-math-00000599-QINU||UNIQ0a986f19d8118a5a-math-0000059A-QINU
 
|-
 
|Combining sub & super||UNIQ0a986f19d8118a5a-code-0000059B-QINU||colspan=2|UNIQ0a986f19d8118a5a-math-0000059C-QINU
 
|-
 
|rowspan="2"|Preceding and/or Additional sub & super||UNIQ0a986f19d8118a5a-code-0000059D-QINU||colspan=2|UNIQ0a986f19d8118a5a-math-0000059E-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-0000059F-QINU||colspan=2|UNIQ0a986f19d8118a5a-math-000005A0-QINU
 
|-
 
|rowspan="4"|Stacking
 
|UNIQ0a986f19d8118a5a-code-000005A1-QINU||colspan="2"|UNIQ0a986f19d8118a5a-math-000005A2-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-000005A3-QINU||colspan="2"|UNIQ0a986f19d8118a5a-math-000005A4-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-000005A5-QINU||colspan="2"|UNIQ0a986f19d8118a5a-math-000005A6-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-000005A7-QINU||colspan="2"|UNIQ0a986f19d8118a5a-math-000005A8-QINU
 
|-
 
|Derivative (forced PNG)||UNIQ0a986f19d8118a5a-code-000005A9-QINU||&nbsp;||UNIQ0a986f19d8118a5a-math-000005AA-QINU
 
|-
 
|Derivative (f in italics may overlap primes in HTML)||UNIQ0a986f19d8118a5a-code-000005AB-QINU||UNIQ0a986f19d8118a5a-math-000005AC-QINU||UNIQ0a986f19d8118a5a-math-000005AD-QINU
 
|-
 
|Derivative (HTML-yanlış)||UNIQ0a986f19d8118a5a-code-000005AE-QINU||UNIQ0a986f19d8118a5a-math-000005AF-QINU||UNIQ0a986f19d8118a5a-math-000005B0-QINU
 
|-
 
|Derivative (PNG-yanlış)||UNIQ0a986f19d8118a5a-code-000005B1-QINU||UNIQ0a986f19d8118a5a-math-000005B2-QINU||UNIQ0a986f19d8118a5a-math-000005B3-QINU
 
|-
 
|Derivative dots||UNIQ0a986f19d8118a5a-code-000005B4-QINU||colspan=2|UNIQ0a986f19d8118a5a-math-000005B5-QINU
 
|-
 
|rowspan="3"|Underlines, overlines, vectors||UNIQ0a986f19d8118a5a-code-000005B6-QINU||colspan=2|UNIQ0a986f19d8118a5a-math-000005B7-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-000005B8-QINU||colspan=2|UNIQ0a986f19d8118a5a-math-000005B9-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-000005BA-QINU||colspan=2|UNIQ0a986f19d8118a5a-math-000005BB-QINU
 
|-
 
|Arrows||UNIQ0a986f19d8118a5a-code-000005BC-QINU||colspan=2|UNIQ0a986f19d8118a5a-math-000005BD-QINU
 
|-
 
|Overbraces||UNIQ0a986f19d8118a5a-code-000005BE-QINU||colspan=2|UNIQ0a986f19d8118a5a-math-000005BF-QINU
 
|-
 
|Underbraces||UNIQ0a986f19d8118a5a-code-000005C0-QINU||colspan=2|UNIQ0a986f19d8118a5a-math-000005C1-QINU
 
|-
 
|Sum||UNIQ0a986f19d8118a5a-code-000005C2-QINU||colspan=2|UNIQ0a986f19d8118a5a-math-000005C3-QINU
 
|-
 
|Sum (force&nbsp;UNIQ0a986f19d8118a5a-code-000005C4-QINU)||UNIQ0a986f19d8118a5a-code-000005C5-QINU||colspan=2|UNIQ0a986f19d8118a5a-math-000005C6-QINU
 
|-
 
|Product||UNIQ0a986f19d8118a5a-code-000005C7-QINU||colspan=2|UNIQ0a986f19d8118a5a-math-000005C8-QINU
 
|-
 
|Product (force&nbsp;UNIQ0a986f19d8118a5a-code-000005C9-QINU)||UNIQ0a986f19d8118a5a-code-000005CA-QINU||colspan=2|UNIQ0a986f19d8118a5a-math-000005CB-QINU
 
|-
 
|Coproduct||UNIQ0a986f19d8118a5a-code-000005CC-QINU||colspan=2|UNIQ0a986f19d8118a5a-math-000005CD-QINU
 
|-
 
|Coproduct (force&nbsp;UNIQ0a986f19d8118a5a-code-000005CE-QINU)||UNIQ0a986f19d8118a5a-code-000005CF-QINU||colspan=2|UNIQ0a986f19d8118a5a-math-000005D0-QINU
 
|-
 
|Limit||UNIQ0a986f19d8118a5a-code-000005D1-QINU||colspan=2|UNIQ0a986f19d8118a5a-math-000005D2-QINU
 
|-
 
|Limit (force&nbsp;UNIQ0a986f19d8118a5a-code-000005D3-QINU)||UNIQ0a986f19d8118a5a-code-000005D4-QINU||colspan=2|UNIQ0a986f19d8118a5a-math-000005D5-QINU
 
|-
 
|Integral||UNIQ0a986f19d8118a5a-code-000005D6-QINU||colspan=2|UNIQ0a986f19d8118a5a-math-000005D7-QINU
 
|-
 
|İntegral (force&nbsp;UNIQ0a986f19d8118a5a-code-000005D8-QINU)||UNIQ0a986f19d8118a5a-code-000005D9-QINU||colspan=2|UNIQ0a986f19d8118a5a-math-000005DA-QINU
 
|-
 
|Çift katlı integral||UNIQ0a986f19d8118a5a-code-000005DB-QINU||colspan=2|UNIQ0a986f19d8118a5a-math-000005DC-QINU
 
|-
 
|Üç katlı integral||UNIQ0a986f19d8118a5a-code-000005DD-QINU||colspan=2|UNIQ0a986f19d8118a5a-math-000005DE-QINU
 
|-
 
|Dört katlı integral||UNIQ0a986f19d8118a5a-code-000005DF-QINU||colspan=2|UNIQ0a986f19d8118a5a-math-000005E0-QINU
 
|-
 
|Path integral||UNIQ0a986f19d8118a5a-code-000005E1-QINU||colspan=2|UNIQ0a986f19d8118a5a-math-000005E2-QINU
 
|-
 
|Intersections||UNIQ0a986f19d8118a5a-code-000005E3-QINU||colspan=2|UNIQ0a986f19d8118a5a-math-000005E4-QINU
 
|-
 
|Unions||UNIQ0a986f19d8118a5a-code-000005E5-QINU||colspan=2|UNIQ0a986f19d8118a5a-math-000005E6-QINU
 
|}
 
 
== Fractions, matrices, multilines ==
 
<table class="wikitable">
 
 
<tr>
 
<th>Feature</th>
 
<th>Syntax</th>
 
<th>How it looks rendered</th>
 
</tr>
 
 
<tr>
 
<td>Fractions</td>
 
<td>UNIQ0a986f19d8118a5a-code-000005E7-QINU</td>
 
<td>UNIQ0a986f19d8118a5a-math-000005E8-QINU</td>
 
</tr>
 
 
<tr>
 
<td>Small Fractions</td>
 
<td>UNIQ0a986f19d8118a5a-code-000005E9-QINU</td>
 
<td>UNIQ0a986f19d8118a5a-math-000005EA-QINU</td>
 
</tr>
 
 
<tr>
 
<td>Large (normal) Fractions</td>
 
<td>UNIQ0a986f19d8118a5a-code-000005EB-QINU</td>
 
<td>UNIQ0a986f19d8118a5a-math-000005EC-QINU</td>
 
</tr>
 
 
<tr>
 
<td>Large (nestled) Fractions</td>
 
<td>UNIQ0a986f19d8118a5a-code-000005ED-QINU</td>
 
<td>UNIQ0a986f19d8118a5a-math-000005EE-QINU</td>
 
</tr>
 
 
<tr>
 
<td>Binomial coefficients</td>
 
<td>UNIQ0a986f19d8118a5a-code-000005EF-QINU</td>
 
<td>UNIQ0a986f19d8118a5a-math-000005F0-QINU</td>
 
</tr>
 
 
 
<tr>
 
<td>Small Binomial coefficients</td>
 
<td>UNIQ0a986f19d8118a5a-code-000005F1-QINU</td>
 
<td>UNIQ0a986f19d8118a5a-math-000005F2-QINU</td>
 
</tr>
 
 
 
<tr>
 
<td>Large (normal) Binomial coefficients</td>
 
<td>UNIQ0a986f19d8118a5a-code-000005F3-QINU</td>
 
<td>UNIQ0a986f19d8118a5a-math-000005F4-QINU</td>
 
</tr>
 
 
<tr>
 
<td rowspan="7">Matrices</td>
 
<td>UNIQ0a986f19d8118a5a-pre-000005F5-QINU</td>
 
<td>UNIQ0a986f19d8118a5a-math-000005F6-QINU</td>
 
</tr>
 
 
<tr>
 
<td>UNIQ0a986f19d8118a5a-pre-000005F7-QINU</td>
 
<td>UNIQ0a986f19d8118a5a-math-000005F8-QINU</td>
 
</tr>
 
 
<tr>
 
<td>UNIQ0a986f19d8118a5a-pre-000005F9-QINU</td>
 
<td>UNIQ0a986f19d8118a5a-math-000005FA-QINU</td>
 
</tr>
 
 
<tr>
 
<td>UNIQ0a986f19d8118a5a-pre-000005FB-QINU</td>
 
<td>UNIQ0a986f19d8118a5a-math-000005FC-QINU</td>
 
</tr>
 
 
<tr>
 
<td>UNIQ0a986f19d8118a5a-pre-000005FD-QINU</td>
 
<td>UNIQ0a986f19d8118a5a-math-000005FE-QINU</td>
 
</tr>
 
 
<tr>
 
<td>UNIQ0a986f19d8118a5a-pre-000005FF-QINU</td>
 
<td>UNIQ0a986f19d8118a5a-math-00000600-QINU</td>
 
</tr>
 
 
<tr>
 
<td>UNIQ0a986f19d8118a5a-pre-00000601-QINU</td>
 
<td>UNIQ0a986f19d8118a5a-math-00000602-QINU</td>
 
</tr>
 
 
 
 
<tr>
 
<td>Case distinctions</td>
 
<td>UNIQ0a986f19d8118a5a-pre-00000603-QINU</td>
 
<td>UNIQ0a986f19d8118a5a-math-00000604-QINU</td>
 
</tr>
 
 
<tr>
 
<td rowspan="2">Multiline equations</td>
 
<td>UNIQ0a986f19d8118a5a-pre-00000605-QINU</td>
 
<td>UNIQ0a986f19d8118a5a-math-00000606-QINU</td>
 
</tr>
 
 
<tr>
 
<td>UNIQ0a986f19d8118a5a-pre-00000607-QINU</td>
 
<td>UNIQ0a986f19d8118a5a-math-00000608-QINU</td>
 
</tr>
 
<tr>
 
<td>Multiline equations <small>(must define number of colums used ({lcr}) <small>(should not be used unless needed)</small></small></td>
 
<td>UNIQ0a986f19d8118a5a-pre-00000609-QINU</td>
 
<td>UNIQ0a986f19d8118a5a-math-0000060A-QINU</td>
 
</tr>
 
 
<tr>
 
<td>Multiline equations (more)</td>
 
<td>UNIQ0a986f19d8118a5a-pre-0000060B-QINU</td>
 
<td>UNIQ0a986f19d8118a5a-math-0000060C-QINU</td>
 
</tr>
 
 
<tr>
 
<td>Breaking up a long expression so that it wraps when necessary</td>
 
<td>UNIQ0a986f19d8118a5a-pre-0000060D-QINU
 
</td>
 
<td>
 
UNIQ0a986f19d8118a5a-math-0000060E-QINUUNIQ0a986f19d8118a5a-math-0000060F-QINUUNIQ0a986f19d8118a5a-math-00000610-QINU
 
</td>
 
</tr>
 
 
<tr>
 
<td>Simultaneous equations</td>
 
<td>UNIQ0a986f19d8118a5a-pre-00000611-QINU</td>
 
<td>UNIQ0a986f19d8118a5a-math-00000612-QINU</td>
 
</tr>
 
 
</table>
 
 
== Alphabets and typefaces ==
 
 
{| class="wikitable"
 
! colspan="2" | Greek alphabet
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000613-QINU
 
|UNIQ0a986f19d8118a5a-math-00000614-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000615-QINU
 
|UNIQ0a986f19d8118a5a-math-00000616-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000617-QINU
 
|UNIQ0a986f19d8118a5a-math-00000618-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000619-QINU
 
|UNIQ0a986f19d8118a5a-math-0000061A-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-0000061B-QINU
 
|UNIQ0a986f19d8118a5a-math-0000061C-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-0000061D-QINU
 
|UNIQ0a986f19d8118a5a-math-0000061E-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-0000061F-QINU
 
|UNIQ0a986f19d8118a5a-math-00000620-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000621-QINU
 
|UNIQ0a986f19d8118a5a-math-00000622-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000623-QINU
 
|UNIQ0a986f19d8118a5a-math-00000624-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000625-QINU
 
|UNIQ0a986f19d8118a5a-math-00000626-QINU
 
|-
 
! colspan="2" | Blackboard Bold/Scripts
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000627-QINU
 
|UNIQ0a986f19d8118a5a-math-00000628-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000629-QINU
 
|UNIQ0a986f19d8118a5a-math-0000062A-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-0000062B-QINU
 
|UNIQ0a986f19d8118a5a-math-0000062C-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-0000062D-QINU
 
|UNIQ0a986f19d8118a5a-math-0000062E-QINU
 
|-
 
! colspan="2" | boldface (vectors)
 
|-
 
|UNIQ0a986f19d8118a5a-code-0000062F-QINU
 
|UNIQ0a986f19d8118a5a-math-00000630-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000631-QINU
 
|UNIQ0a986f19d8118a5a-math-00000632-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000633-QINU
 
|UNIQ0a986f19d8118a5a-math-00000634-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000635-QINU
 
|UNIQ0a986f19d8118a5a-math-00000636-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000637-QINU
 
|UNIQ0a986f19d8118a5a-math-00000638-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000639-QINU
 
|UNIQ0a986f19d8118a5a-math-0000063A-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-0000063B-QINU
 
|UNIQ0a986f19d8118a5a-math-0000063C-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-0000063D-QINU
 
|UNIQ0a986f19d8118a5a-math-0000063E-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-0000063F-QINU
 
|UNIQ0a986f19d8118a5a-math-00000640-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000641-QINU
 
|UNIQ0a986f19d8118a5a-math-00000642-QINU
 
|-
 
! colspan="2" | Boldface (greek)
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000643-QINU
 
|UNIQ0a986f19d8118a5a-math-00000644-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000645-QINU
 
|UNIQ0a986f19d8118a5a-math-00000646-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000647-QINU
 
|UNIQ0a986f19d8118a5a-math-00000648-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000649-QINU
 
|UNIQ0a986f19d8118a5a-math-0000064A-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-0000064B-QINU
 
|UNIQ0a986f19d8118a5a-math-0000064C-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-0000064D-QINU
 
|UNIQ0a986f19d8118a5a-math-0000064E-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-0000064F-QINU
 
|UNIQ0a986f19d8118a5a-math-00000650-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000651-QINU
 
|UNIQ0a986f19d8118a5a-math-00000652-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000653-QINU
 
|UNIQ0a986f19d8118a5a-math-00000654-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000655-QINU
 
|UNIQ0a986f19d8118a5a-math-00000656-QINU
 
|-
 
! colspan="2" | Italics
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000657-QINU
 
|UNIQ0a986f19d8118a5a-math-00000658-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000659-QINU
 
|UNIQ0a986f19d8118a5a-math-0000065A-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-0000065B-QINU
 
|UNIQ0a986f19d8118a5a-math-0000065C-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-0000065D-QINU
 
|UNIQ0a986f19d8118a5a-math-0000065E-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-0000065F-QINU
 
|UNIQ0a986f19d8118a5a-math-00000660-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000661-QINU
 
|UNIQ0a986f19d8118a5a-math-00000662-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000663-QINU
 
|UNIQ0a986f19d8118a5a-math-00000664-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000665-QINU
 
|UNIQ0a986f19d8118a5a-math-00000666-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000667-QINU
 
|UNIQ0a986f19d8118a5a-math-00000668-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000669-QINU
 
|UNIQ0a986f19d8118a5a-math-0000066A-QINU
 
|-
 
! colspan="2" | Roman typeface
 
|-
 
|UNIQ0a986f19d8118a5a-code-0000066B-QINU
 
|UNIQ0a986f19d8118a5a-math-0000066C-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-0000066D-QINU
 
|UNIQ0a986f19d8118a5a-math-0000066E-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-0000066F-QINU
 
|UNIQ0a986f19d8118a5a-math-00000670-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000671-QINU
 
|UNIQ0a986f19d8118a5a-math-00000672-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000673-QINU
 
|UNIQ0a986f19d8118a5a-math-00000674-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000675-QINU
 
|UNIQ0a986f19d8118a5a-math-00000676-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000677-QINU
 
|UNIQ0a986f19d8118a5a-math-00000678-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000679-QINU
 
|UNIQ0a986f19d8118a5a-math-0000067A-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-0000067B-QINU
 
|UNIQ0a986f19d8118a5a-math-0000067C-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-0000067D-QINU
 
|UNIQ0a986f19d8118a5a-math-0000067E-QINU
 
|-
 
! colspan="2" | Fraktur typeface
 
|-
 
|UNIQ0a986f19d8118a5a-code-0000067F-QINU
 
|UNIQ0a986f19d8118a5a-math-00000680-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000681-QINU
 
|UNIQ0a986f19d8118a5a-math-00000682-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000683-QINU
 
|UNIQ0a986f19d8118a5a-math-00000684-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000685-QINU
 
|UNIQ0a986f19d8118a5a-math-00000686-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000687-QINU
 
|UNIQ0a986f19d8118a5a-math-00000688-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000689-QINU
 
|UNIQ0a986f19d8118a5a-math-0000068A-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-0000068B-QINU
 
|UNIQ0a986f19d8118a5a-math-0000068C-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-0000068D-QINU
 
|UNIQ0a986f19d8118a5a-math-0000068E-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-0000068F-QINU
 
|UNIQ0a986f19d8118a5a-math-00000690-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000691-QINU
 
|UNIQ0a986f19d8118a5a-math-00000692-QINU
 
|-
 
! colspan="2" | Calligraphy/Script
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000693-QINU
 
|UNIQ0a986f19d8118a5a-math-00000694-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000695-QINU
 
|UNIQ0a986f19d8118a5a-math-00000696-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000697-QINU
 
|UNIQ0a986f19d8118a5a-math-00000698-QINU
 
|-
 
|UNIQ0a986f19d8118a5a-code-00000699-QINU
 
|UNIQ0a986f19d8118a5a-math-0000069A-QINU
 
|-
 
! colspan="2" | Hebrew
 
|-
 
|UNIQ0a986f19d8118a5a-code-0000069B-QINU
 
|UNIQ0a986f19d8118a5a-math-0000069C-QINU
 
|}
 
 
<table class="wikitable">
 
 
<tr>
 
<th>Feature</th>
 
<th>Syntax</th>
 
<th colspan="2">How it looks rendered</th>
 
</tr>
 
 
<tr>
 
<td>non-italicised characters</td>
 
<td>\mbox{abc}</td>
 
<td>UNIQ0a986f19d8118a5a-math-0000069D-QINU</td>
 
<td>UNIQ0a986f19d8118a5a-math-0000069E-QINU</td>
 
</tr>
 
 
<tr>
 
<td>mixed italics (bad)</td>
 
<td>\mbox{if} n \mbox{is even}</td>
 
<td>UNIQ0a986f19d8118a5a-math-0000069F-QINU</td>
 
<td>UNIQ0a986f19d8118a5a-math-000006A0-QINU</td>
 
</tr>
 
 
<tr>
 
<td>mixed italics (good)</td>
 
<td>\mbox{if }n\mbox{ is even}</td>
 
<td>UNIQ0a986f19d8118a5a-math-000006A1-QINU</td>
 
<td>UNIQ0a986f19d8118a5a-math-000006A2-QINU</td>
 
</tr>
 
 
<tr>
 
<td>mixed italics (more legible: ~ is a non-breaking space, while "\ " forces a space)</td>
 
<td>\mbox{if}~n\ \mbox{is even}</td>
 
<td>UNIQ0a986f19d8118a5a-math-000006A3-QINU</td>
 
<td>UNIQ0a986f19d8118a5a-math-000006A4-QINU</td>
 
</tr>
 
 
</table>
 
 
== Parenthesizing big expressions, brackets, bars ==
 
<table border="2" cellpadding="4" cellspacing="0" style="margin: 1em 1em 1em 0; background: #f9f9f9; border: 1px #aaa solid; border-collapse: collapse;">
 
 
<tr>
 
<th>Feature</th>
 
<th>Syntax</th>
 
<th>How it looks rendered</th>
 
</tr>
 
 
<tr>
 
<td>Bad</td>
 
<td>( \frac{1}{2} )</td>
 
<td>UNIQ0a986f19d8118a5a-math-000006A5-QINU</td>
 
</tr>
 
 
<tr>
 
<td>Good</td>
 
<td>\left ( \frac{1}{2} \right )</td>
 
<td>UNIQ0a986f19d8118a5a-math-000006A6-QINU</td>
 
</tr>
 
 
</table>
 
 
You can use various delimiters with \left and \right:
 
 
<table border="2" cellpadding="4" cellspacing="0" style="margin: 1em 1em 1em 0; background: #f9f9f9; border: 1px #aaa solid; border-collapse: collapse;">
 
 
<tr>
 
<th>Feature</th>
 
<th>Syntax</th>
 
<th>How it looks rendered</th>
 
</tr>
 
 
<tr>
 
<td>Parentheses</td>
 
<td>\left ( \frac{a}{b} \right )</td>
 
<td>UNIQ0a986f19d8118a5a-math-000006A7-QINU</td>
 
</tr>
 
 
<tr>
 
<td>Brackets</td>
 
<td>\left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack</td>
 
<td>UNIQ0a986f19d8118a5a-math-000006A8-QINU</td>
 
</tr>
 
 
<tr>
 
<td>Braces</td>
 
<td>\left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace</td>
 
<td>UNIQ0a986f19d8118a5a-math-000006A9-QINU</td>
 
</tr>
 
 
<tr>
 
<td>Angle brackets</td>
 
<td>\left \langle \frac{a}{b} \right \rangle</td>
 
<td>UNIQ0a986f19d8118a5a-math-000006AA-QINU</td>
 
</tr>
 
 
<tr>
 
<td>Bars and double bars</td>
 
<td>\left | \frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \|</td>
 
<td>UNIQ0a986f19d8118a5a-math-000006AB-QINU</td>
 
</tr>
 
 
<tr>
 
<td>Floor and ceiling functions:</td>
 
<td>\left \lfloor \frac{a}{b} \right \rfloor \left \lceil \frac{c}{d} \right \rceil</td>
 
<td>UNIQ0a986f19d8118a5a-math-000006AC-QINU</td>
 
</tr>
 
 
<tr>
 
<td>Slashes and backslashes</td>
 
<td>\left / \frac{a}{b} \right \backslash</td>
 
<td>UNIQ0a986f19d8118a5a-math-000006AD-QINU</td>
 
</tr>
 
 
<tr>
 
<td>Up, down and up-down arrows</td>
 
<td>\left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow</td>
 
<td>UNIQ0a986f19d8118a5a-math-000006AE-QINU</td>
 
</tr>
 
 
<tr>
 
<td>
 
Delimiters can be mixed,<br/>as long as \left and \right match
 
</td>
 
<td>
 
\left [ 0,1 \right )<br/>\left \langle \psi \right |
 
</td>
 
<td>
 
UNIQ0a986f19d8118a5a-math-000006AF-QINU<br/>UNIQ0a986f19d8118a5a-math-000006B0-QINU
 
</td>
 
</tr>
 
 
<tr>
 
<td>Use \left. and \right. if you don't<br/>want a delimiter to appear:</td>
 
<td>\left . \frac{A}{B} \right \} \to X</td>
 
<td>UNIQ0a986f19d8118a5a-math-000006B1-QINU</td>
 
</tr>
 
 
<tr>
 
<td rowspan="7">Size of the delimiters</td>
 
<td>\big( \Big( \bigg( \Bigg( ... \Bigg] \bigg] \Big] \big]</td>
 
<td colspan="2">
 
UNIQ0a986f19d8118a5a-math-000006B2-QINU
 
</td>
 
</tr>
 
<tr>
 
<td>\big\{ \Big\{ \bigg\{ \Bigg\{ ... \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle</td>
 
<td colspan="2">
 
UNIQ0a986f19d8118a5a-math-000006B3-QINU
 
</td>
 
</tr>
 
<tr>
 
<td>\big\| \Big\| \bigg\| \Bigg\| ... \Bigg| \bigg| \Big| \big|</td>
 
<td colspan="2">UNIQ0a986f19d8118a5a-math-000006B4-QINU</td>
 
</tr>
 
<tr>
 
<td>\big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor ... \Bigg\rceil \bigg\rceil \Big\rceil \big\rceil</td>
 
<td colspan="2">
 
UNIQ0a986f19d8118a5a-math-000006B5-QINU
 
</td>
 
</tr>
 
<tr>
 
<td>\big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow ... \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow</td>
 
<td colspan="2">
 
UNIQ0a986f19d8118a5a-math-000006B6-QINU
 
</td>
 
</tr>
 
<tr>
 
<td>\big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow ... \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow</td>
 
<td colspan="2">
 
UNIQ0a986f19d8118a5a-math-000006B7-QINU
 
</td>
 
</tr>
 
<tr>
 
<td>\big / \Big / \bigg / \Bigg / ... \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash</td>
 
<td colspan="2">
 
UNIQ0a986f19d8118a5a-math-000006B8-QINU
 
</td>
 
</tr>
 
 
</table>
 
 
== Spacing ==
 
Note that TeX handles most spacing automatically, but you may sometimes want manual control.
 
<table border="2" cellpadding="4" cellspacing="0" style="margin: 1em 1em 1em 0; background: #f9f9f9; border: 1px #aaa solid; border-collapse: collapse;">
 
 
<tr>
 
<th>Feature</th>
 
<th>Syntax</th>
 
<th>How it looks rendered</th>
 
</tr>
 
 
<tr>
 
<td>double quad space</td>
 
<td>a \qquad b</td>
 
<td>UNIQ0a986f19d8118a5a-math-000006B9-QINU</td>
 
</tr>
 
 
<tr>
 
<td>quad space</td>
 
<td>a \quad b</td>
 
<td>UNIQ0a986f19d8118a5a-math-000006BA-QINU</td>
 
</tr>
 
 
<tr>
 
<td>text space</td>
 
<td>a\ b</td>
 
<td>UNIQ0a986f19d8118a5a-math-000006BB-QINU</td>
 
</tr>
 
 
<tr>
 
<td>text space without PNG conversion</td>
 
<td>a \mbox{ } b</td>
 
<td>UNIQ0a986f19d8118a5a-math-000006BC-QINU</td>
 
</tr>
 
 
<tr>
 
<td>large space</td>
 
<td>a\;b</td>
 
<td>UNIQ0a986f19d8118a5a-math-000006BD-QINU</td>
 
</tr>
 
 
<tr>
 
<td>medium space</td>
 
<td>a\&gt;b</td>
 
<td>[not supported]</td>
 
</tr>
 
 
<tr>
 
<td>small space</td>
 
<td>a\,b</td>
 
<td>UNIQ0a986f19d8118a5a-math-000006BE-QINU</td>
 
</tr>
 
 
<tr>
 
<td>no space</td>
 
<td>ab</td>
 
<td>UNIQ0a986f19d8118a5a-math-000006BF-QINU</td>
 
</tr>
 
 
<tr>
 
<td>small negative space</td>
 
<td>a\!b</td>
 
<td>UNIQ0a986f19d8118a5a-math-000006C0-QINU</td>
 
</tr>
 
 
</table>
 
 
== Align with normal text flow ==
 
Due to the default css
 
 
UNIQ0a986f19d8118a5a-pre-000006C1-QINU
 
 
an inline expression like UNIQ0a986f19d8118a5a-math-000006C2-QINU should look good.
 
 
If you need to align it otherwise, use UNIQ0a986f19d8118a5a-code-000006C3-QINU and play with the UNIQ0a986f19d8118a5a-code-000006C4-QINU argument until you get it right; however, how it looks may depend on the browser and the browser settings.
 
 
Also note that if you rely on this workaround, if/when the rendering on the server gets fixed in future releases, as a result of this extra manual offset your formulae will suddenly be aligned incorrectly. So use it sparingly, if at all.
 
 
== Forced PNG rendering ==
 
 
To force the formula to render as PNG, add UNIQ0a986f19d8118a5a-code-000006C5-QINU (small space) at the end of the formula (where it is not rendered).  This will force PNG if the user is in "HTML if simple" mode, but not for "HTML if possible" mode (math rendering settings in [[Help:Preferences|preferences]]).
 
 
You can also use UNIQ0a986f19d8118a5a-code-000006C6-QINU (small space and negative space, which cancel out) anywhere inside the math tags.  This ''does'' force PNG even in "HTML if possible" mode, unlike UNIQ0a986f19d8118a5a-code-000006C7-QINU.
 
 
This could be useful to keep the rendering of formulae in a proof consistent, for example, or to fix formulae that render incorrectly in HTML (at one time, a^{2+2} rendered with an extra underscore), or to demonstrate how something is rendered when it would normally show up as HTML (as in the examples above).
 
 
For instance:
 
 
<table border="2" cellpadding="4" cellspacing="0" style="margin: 1em 1em 1em 0; background: #f9f9f9; border: 1px #aaa solid; border-collapse: collapse;">
 
 
<tr>
 
<th>Syntax</th>
 
<th>How it looks rendered</th>
 
</tr>
 
 
<tr>
 
<td>a^{c+2}</td>
 
<td>UNIQ0a986f19d8118a5a-math-000006C8-QINU</td>
 
</tr>
 
 
<tr>
 
<td>a^{c+2} \,</td>
 
<td>UNIQ0a986f19d8118a5a-math-000006C9-QINU</td>
 
</tr>
 
 
<tr>
 
<td>a^{\,\!c+2}</td>
 
<td>UNIQ0a986f19d8118a5a-math-000006CA-QINU </td>
 
</tr>
 
 
<tr>
 
<td>a^{b^{c+2}}</td>
 
<td>UNIQ0a986f19d8118a5a-math-000006CB-QINU (WRONG with option "HTML if possible or else PNG"!)</td>
 
</tr>
 
 
<tr>
 
<td>a^{b^{c+2}} \,</td>
 
<td>UNIQ0a986f19d8118a5a-math-000006CC-QINU (WRONG with option "HTML if possible or else PNG"!)</td>
 
</tr>
 
 
<tr>
 
<td>a^{b^{c+2}}\approx 5</td>
 
<td>UNIQ0a986f19d8118a5a-math-000006CD-QINU (due to "UNIQ0a986f19d8118a5a-math-000006CE-QINU" correctly displayed, no code "\,\!" needed)</td>
 
</tr>
 
 
<tr>
 
<td>a^{b^{\,\!c+2}}</td>
 
<td>UNIQ0a986f19d8118a5a-math-000006CF-QINU</td>
 
</tr>
 
 
<tr>
 
<td>\int_{-N}^{N} e^x\, dx</td>
 
<td>UNIQ0a986f19d8118a5a-math-000006D0-QINU</td>
 
</tr>
 
 
</table>
 
 
 
This has been tested with most of the formulae on this page, and seems to work perfectly.
 
 
You might want to include a comment in the HTML so people don't "correct" the formula by removing it:
 
 
:''UNIQ0a986f19d8118a5a-nowiki-000006D1-QINU''
 
 
== Color ==
 
 
Equations can use color:
 
 
*UNIQ0a986f19d8118a5a-code-000006D2-QINU
 
*:UNIQ0a986f19d8118a5a-math-000006D3-QINU
 
 
*UNIQ0a986f19d8118a5a-code-000006D4-QINU
 
*:UNIQ0a986f19d8118a5a-math-000006D5-QINU
 
 
See here for [http://oregonstate.edu/%7Epeterseb/tex/samples/docs/color-package-demo.pdf all named colours] supported by LaTeX.
 
 
Note that color should not be used as the ''only'' way to identify something because color blind people may not be able to distinguish between the two colors. See [[en:Wikipedia:Manual of Style#Formatting issues]].
 
 
== Examples ==
 
 
<center>
 
===Quadratic Polynomial===
 
UNIQ0a986f19d8118a5a-math-000006D6-QINU
 
 
UNIQ0a986f19d8118a5a-nowiki-000006D7-QINU
 
 
===Quadratic Polynomial (Force PNG Rendering)===
 
UNIQ0a986f19d8118a5a-math-000006D8-QINU
 
 
UNIQ0a986f19d8118a5a-nowiki-000006D9-QINU
 
 
===Quadratic Formula===
 
UNIQ0a986f19d8118a5a-math-000006DA-QINU
 
 
UNIQ0a986f19d8118a5a-nowiki-000006DB-QINU
 
 
===Tall Parentheses and Fractions ===
 
UNIQ0a986f19d8118a5a-math-000006DC-QINU
 
 
UNIQ0a986f19d8118a5a-nowiki-000006DD-QINU
 
 
UNIQ0a986f19d8118a5a-math-000006DE-QINU
 
 
UNIQ0a986f19d8118a5a-nowiki-000006DF-QINU
 
 
===Integrals===
 
UNIQ0a986f19d8118a5a-math-000006E0-QINU
 
 
UNIQ0a986f19d8118a5a-nowiki-000006E1-QINU
 
 
===Summation===
 
UNIQ0a986f19d8118a5a-math-000006E2-QINU
 
 
UNIQ0a986f19d8118a5a-nowiki-000006E3-QINU
 
 
=== Differential Equation ===
 
UNIQ0a986f19d8118a5a-math-000006E4-QINU
 
 
UNIQ0a986f19d8118a5a-nowiki-000006E5-QINU
 
 
===Complex numbers===
 
UNIQ0a986f19d8118a5a-math-000006E6-QINU
 
 
UNIQ0a986f19d8118a5a-nowiki-000006E7-QINU
 
 
===Limits===
 
UNIQ0a986f19d8118a5a-math-000006E8-QINU
 
 
UNIQ0a986f19d8118a5a-nowiki-000006E9-QINU
 
 
===Integral Equation===
 
UNIQ0a986f19d8118a5a-math-000006EA-QINU
 
 
UNIQ0a986f19d8118a5a-nowiki-000006EB-QINU
 
 
===Example===
 
UNIQ0a986f19d8118a5a-math-000006EC-QINU
 
 
UNIQ0a986f19d8118a5a-nowiki-000006ED-QINU
 
 
===Continuation and cases===
 
UNIQ0a986f19d8118a5a-math-000006EE-QINU
 
 
UNIQ0a986f19d8118a5a-nowiki-000006EF-QINU
 
 
===Prefixed subscript===
 
UNIQ0a986f19d8118a5a-math-000006F0-QINU
 
 
UNIQ0a986f19d8118a5a-nowiki-000006F1-QINU
 
 
</center>
 
 
==Bug reports==
 
Discussions, bug reports and feature requests should go to the [[m:Mailing list#Wikitech|Wikitech-l mailing list]].  These can also be filed on [[Bugzilla:|Mediazilla]] under ''MediaWiki extensions''.
 
 
==See also==
 
*[[w:Wikipedia:How to write a Wikipedia article on Mathematics#Typesetting_of_mathematical_formulas|Typesetting of mathematical formulas]]
 
* Proposed [[m:GNU LilyPond support]]
 
*[[w:Table of mathematical symbols|Table of mathematical symbols]]
 
*[[m:Blahtex]], or [[w:Wikipedia talk:WikiProject Mathematics/Archive10#blahtex: a LaTeX to MathML converter|blahtex: a LaTeX to MathML converter for Wikipedia]]
 
*[[Help:Editing|General help]] for editing a Wiki page
 
*[[Mimetex alternative]] for an another way to display mathematics using Mimetex.cgi
 
 
== External links ==
 
* A LaTeX tutorial.  http://www.maths.tcd.ie/~dwilkins/LaTeXPrimer/
 
* A [[w:Portable Document Format|PDF]] document introducing TeX -- see page 39 onwards for a good introduction to the maths side of things: http://www.ctan.org/tex-archive/info/gentle/gentle.pdf
 
* A PDF document introducing LaTeX -- skip to page 59 for the math section. See page 72 for a complete reference list of symbols included in LaTeX and AMS-LaTeX. http://www.ctan.org/tex-archive/info/lshort/english/lshort.pdf
 
* TeX reference card: http://www.csit.fsu.edu/docs/tex/tex-refcard-letter.pdf
 
* http://www.ams.org/tex/amslatex.html
 
* A set of public domain fixed-size math symbol bitmaps: http://us.metamath.org/symbols/symbols.html
 
* [[w:MathML|MathML]] - A product of the [[w:W3C|W3C]] Math working group, is a low-level specification for describing mathematics as a basis for machine to machine communication. [http://www.w3.org/Math/ http://www.w3.org/Math/]
 
  
 
[[Kategori:Turkmathviki Yardım]]
 
[[Kategori:Turkmathviki Yardım]]

20:01, 7 Mart 2014 itibarı ile sayfanın şu anki hâli

Kodlama

Matematiksel formüller <math>...</math> kodları arasına klasik LaTeX komutları ile yazılır.

Örnek

<math>x\in A</math> yazdığınızda görüntü $ x\in A $ olur.

Daha çok örnek için

Matematiksel Formüller için tıklayınız