"Mutlak integrallenebilir fonksiyon" sayfasının sürümleri arasındaki fark

turkmathviki sitesinden
Atla: kullan, ara
(Yeni sayfa: "==Definition and properties=== Consider a measure space <math>(X, \mathcal{A}, \mu)</math>. A measurable function <math>f:X \to [-\infty, \...")
 
1. satır: 1. satır:
==Definition and properties===
+
<math>\newcommand{\abs}[1]{\left|#1\right|}</math>
 +
 
 +
===Tanım ve özellikler===
 
Consider a [[Measure space|measure space]] <math>(X, \mathcal{A}, \mu)</math>. A [[Measurable function|measurable function]] <math>f:X \to [-\infty, \infty]</math> is then called absolutely integrable if  
 
Consider a [[Measure space|measure space]] <math>(X, \mathcal{A}, \mu)</math>. A [[Measurable function|measurable function]] <math>f:X \to [-\infty, \infty]</math> is then called absolutely integrable if  
<math>\[\int \abs{f}\, d\mu < \infty\, .\]</math>
+
 
 +
<math>\int \abs{f}\, d\mu < \infty\, .</math>
 +
 
 
An absolutely integrable function is also commonly called a ''summable function''.
 
An absolutely integrable function is also commonly called a ''summable function''.
  
'''Remark'''
+
'''Uyarı'''
 
If we assume only the measurability of <math>|f|</math>, then this does not guarantee the measurability of <math>f</math>.
 
If we assume only the measurability of <math>|f|</math>, then this does not guarantee the measurability of <math>f</math>.
 
Although a few authors require only the measurability of <math>|f|</math>, the vast majority of the literature assumes that <math>f</math>
 
Although a few authors require only the measurability of <math>|f|</math>, the vast majority of the literature assumes that <math>f</math>
10. satır: 14. satır:
  
 
The following inequality, which is a particular case of [[Jensen inequality|Jensen's inequality]], holds for any absolutely integrable function:
 
The following inequality, which is a particular case of [[Jensen inequality|Jensen's inequality]], holds for any absolutely integrable function:
<math>\[
+
 
 +
<math>
 
\abs{\int f\, d\mu}\leq \int \abs{f}\, d\mu
 
\abs{\int f\, d\mu}\leq \int \abs{f}\, d\mu
\]</math>
+
</math>
 +
 
 
(the assumption of absolute integrability is however not fundamental: the inequality makes sense and holds as soon
 
(the assumption of absolute integrability is however not fundamental: the inequality makes sense and holds as soon
 
as we can define
 
as we can define
22. satır: 28. satır:
 
The space of absolutely integrable functions is a linear space which is usually denoted by
 
The space of absolutely integrable functions is a linear space which is usually denoted by
 
<math>L^1 (X, \mu)</math> and  
 
<math>L^1 (X, \mu)</math> and  
<math>\[
+
 
 +
<math>
 
\|f\|_1 := \int \abs{f}\, d\mu < \infty
 
\|f\|_1 := \int \abs{f}\, d\mu < \infty
\]</math>
+
</math>
 +
 
 
is a seminorm on it. It is customary to identify elements of $L^1 (X, \mu)$ whose values coincide except for
 
is a seminorm on it. It is customary to identify elements of $L^1 (X, \mu)$ whose values coincide except for
 
a $\mu$-null set: after this identification the norme $\|\cdot\|_1$ endowes $L^1 (X, \mu)$ with a [[Banach space]]
 
a $\mu$-null set: after this identification the norme $\|\cdot\|_1$ endowes $L^1 (X, \mu)$ with a [[Banach space]]
30. satır: 38. satır:
 
[[Lp spaces]].
 
[[Lp spaces]].
  
===Generalizations===
+
===Genelleştirmeler===
 
The notion of absolutely integrable function can be generalized to mappings taking values in normed vector spaces:
 
The notion of absolutely integrable function can be generalized to mappings taking values in normed vector spaces:
 
in that case $\abs{\cdot}$ is substituted by the corresponding norm. This is straightforward for finite-dimensional
 
in that case $\abs{\cdot}$ is substituted by the corresponding norm. This is straightforward for finite-dimensional
 
vector spaces and all the properties mentioned above holds in this case as well; for the case of infinite-dimensional spaces some care is needed, see [[Bochner integral]].
 
vector spaces and all the properties mentioned above holds in this case as well; for the case of infinite-dimensional spaces some care is needed, see [[Bochner integral]].
  
===Lebesgue measure===
+
===Lebesgue ölçüsü===
 
The primary examples of absolutely integrable functions are given when <math>X</math> is an interval of the real axis (or
 
The primary examples of absolutely integrable functions are given when <math>X</math> is an interval of the real axis (or
 
a domain of <math>\mathbb{R}^n</math>), <math>\mu</math> the [[Lebesgue measure]] and <math>\mathcal{A}</math> the corresponding [[Algebra of sets|<math>\sigma</math>-algebra]] of Lebesgue measurable functions.
 
a domain of <math>\mathbb{R}^n</math>), <math>\mu</math> the [[Lebesgue measure]] and <math>\mathcal{A}</math> the corresponding [[Algebra of sets|<math>\sigma</math>-algebra]] of Lebesgue measurable functions.
  
===Improper integral===
+
===Genelleştirilmiş integral===
 
Consider an interval <math>[a,b[</math> (resp. <math>]a,b]</math>, <math>]a,b[</math>) where <math>b</math> might also be <math>\infty</math>. Some authors use the term  
 
Consider an interval <math>[a,b[</math> (resp. <math>]a,b]</math>, <math>]a,b[</math>) where <math>b</math> might also be <math>\infty</math>. Some authors use the term  
 
absolutely integrable functions for functions <math>f</math> which are Riemann-integrable on all intervals <math>[a, \beta]</math> with <math>\beta<b</math> (resp. <math>]\alpha, b]</math>, <math>]\alpha, \beta[</math>) and for which
 
absolutely integrable functions for functions <math>f</math> which are Riemann-integrable on all intervals <math>[a, \beta]</math> with <math>\beta<b</math> (resp. <math>]\alpha, b]</math>, <math>]\alpha, \beta[</math>) and for which
<math>\[
+
 
 +
<math>
 
\lim_{\beta\uparrow b} \int_a^\beta \abs{f (x)}\, dx < \infty\,  
 
\lim_{\beta\uparrow b} \int_a^\beta \abs{f (x)}\, dx < \infty\,  
\]</math>
+
</math>
 +
 
 
(and analogous conditions for the other cases).
 
(and analogous conditions for the other cases).
 
This implies the existence (and finiteness) of  
 
This implies the existence (and finiteness) of  
<math>\[
+
 
 +
<math>
 
\lim_{\beta\uparrow b} \int_a^\beta f (x)\, dx\,  
 
\lim_{\beta\uparrow b} \int_a^\beta f (x)\, dx\,  
\]</math>
+
</math>
 +
 
 
(and analogous limits for the other cases), which is often called [[Improper integral]].
 
(and analogous limits for the other cases), which is often called [[Improper integral]].
  
 
The converse is not true, namely the existence of the improper integral does not guarantee the absolute integrability, regardless whether we are dealing with Riemann-integrable or Lebesgue-integrable functions. An example is  
 
The converse is not true, namely the existence of the improper integral does not guarantee the absolute integrability, regardless whether we are dealing with Riemann-integrable or Lebesgue-integrable functions. An example is  
<math>\[
+
 
 +
<math>
 
\int_0^\infty \frac{\sin x}{x}\, dx\, .
 
\int_0^\infty \frac{\sin x}{x}\, dx\, .
\]</math>
+
</math>
 +
 
 +
 
 +
===Kaynaklar===
 +
[1] C.D. Aliprantz,  O. Burleinshaw,  "Principles of real analysis" , North-Holland
 +
 
 +
[2] V.A. Il'in,  E.G. Poznyak,  "Fundamentals of mathematical analysis" , '''1–2''' , MIR  (1982)  (Translated from Russian)
 +
 
 +
[3] L.D. Kudryavtsev,  "Mathematical analysis" , '''1''' , Moscow  (1973)  (In Russian)
 +
 
 +
[4] S.M. Nikol'skii,  "A course of mathematical analysis" , '''1''' , MIR  (1977) 
 +
 
 +
[5] H.L. Royden,  "Real analysis" , Macmillan  (1968)
 +
 
 +
[6] W. Rudin,  "Principles of mathematical analysis" , McGraw-Hill  (1953)
 +
 
 +
[7| W. Rudin,  "Real and complex analysis" , McGraw-Hill  (1966)  pp. 98
 +
 
 +
[8] L. Schwartz,  "Cours d'analyse" , '''1''' , Hermann  (1967)
 +
 
 +
[9] A.E. Taylor,  "General theory of functions and integration" , Blaisdell  (1965)
 +
 
 +
[10] A.C. Zaanen,  "Integration" , North-Holland  (1967)
  
===References===
+
[[Kategori: Tanımlar]]
{|
+
|-
+
|valign="top"|{{Ref|AB}}|| C.D. Aliprantz,  O. Burleinshaw,  "Principles of real analysis" , North-Holland  (1981)  {{MR|}} {{ZBL|}}
+
|-
+
|valign="top"|{{Ref|IP}}|| V.A. Il'in,  E.G. Poznyak,  "Fundamentals of mathematical analysis" , '''1–2''' , MIR  (1982)  (Translated from Russian)  {{MR|}} {{ZBL|}}
+
|-
+
|valign="top"|{{Ref|Ku}}||  L.D. Kudryavtsev,  "Mathematical analysis" , '''1''' , Moscow  (1973)  (In Russian)  {{MR|1617334}} {{MR|1070567}} {{MR|1070566}} {{MR|1070565}} {{MR|0866891}} {{MR|0767983}} {{MR|0767982}} {{MR|0628614}} {{MR|0619214}} {{ZBL|1080.00002}} {{ZBL|1080.00001}} {{ZBL|1060.26002}} {{ZBL|0869.00003}} {{ZBL|0696.26002}} {{ZBL|0703.26001}} {{ZBL|0609.00001}} {{ZBL|0632.26001}} {{ZBL|0485.26002}} {{ZBL|0485.26001}}
+
|-
+
|valign="top"|{{Ref|Nik}}||  S.M. Nikol'skii,  "A course of mathematical analysis" , '''1''' , MIR  (1977)  (Translated from Russian)  {{MR|}} {{ZBL|0397.00003}} {{ZBL|0384.00004}}
+
|-
+
|valign="top"|{{Ref|Roy}}||  H.L. Royden,  "Real analysis" , Macmillan  (1968)  {{MR|1013117}}  {{MR|1532990}} {{MR|0151555}} {{ZBL|1191.26002}} {{ZBL|0704.26006}}  {{ZBL|0197.03501}} {{ZBL|0121.05501}}
+
|-
+
|valign="top"|{{Ref|Ru1}}|| W. Rudin,  "Principles of mathematical analysis" , McGraw-Hill  (1953)  {{MR|0055409}} {{ZBL|0052.05301}}
+
|-
+
|valign="top"|{{Ref|Ru2}}|| W. Rudin,  "Real and complex analysis" , McGraw-Hill  (1966)  pp. 98  {{MR|0210528}} {{ZBL|0142.01701}}
+
|-
+
|valign="top"|{{Ref|Sch}}||  L. Schwartz,  "Cours d'analyse" , '''1''' , Hermann  (1967)  {{MR|0756815}} {{MR|0756814}} {{ZBL|}}
+
|-
+
|valign="top"|{{Ref|Tay}}|| A.E. Taylor,  "General theory of functions and integration" , Blaisdell  (1965)  {{MR|0178100}} {{ZBL|0135.11301}}
+
|-
+
|valign="top"|{{Ref|Zaa}}|| A.C. Zaanen,  "Integration" , North-Holland  (1967)  {{MR|0222234}} {{ZBL|0175.05002}}
+
|-
+
|}
+

13:52, 27 Kasım 2014 tarihindeki hâli

$ \newcommand{\abs}[1]{\left|#1\right|} $

Tanım ve özellikler

Consider a measure space $ (X, \mathcal{A}, \mu) $. A measurable function $ f:X \to [-\infty, \infty] $ is then called absolutely integrable if

$ \int \abs{f}\, d\mu < \infty\, . $

An absolutely integrable function is also commonly called a summable function.

Uyarı If we assume only the measurability of $ |f| $, then this does not guarantee the measurability of $ f $. Although a few authors require only the measurability of $ |f| $, the vast majority of the literature assumes that $ f $ itself is measurable.

The following inequality, which is a particular case of Jensen's inequality, holds for any absolutely integrable function:

$ \abs{\int f\, d\mu}\leq \int \abs{f}\, d\mu $

(the assumption of absolute integrability is however not fundamental: the inequality makes sense and holds as soon as we can define $ \[ \int f\, d\mu\, , \] $ that is, as soon as the integral of the positive part of $ |f| $ or that of the negative part of $ |f| $ are finite).

The space of absolutely integrable functions is a linear space which is usually denoted by $ L^1 (X, \mu) $ and

$ \|f\|_1 := \int \abs{f}\, d\mu < \infty $

is a seminorm on it. It is customary to identify elements of $L^1 (X, \mu)$ whose values coincide except for a $\mu$-null set: after this identification the norme $\|\cdot\|_1$ endowes $L^1 (X, \mu)$ with a Banach space structure. The $L^1$ space is then just one case of a more general class of Banach spaces called Lp spaces.

Genelleştirmeler

The notion of absolutely integrable function can be generalized to mappings taking values in normed vector spaces: in that case $\abs{\cdot}$ is substituted by the corresponding norm. This is straightforward for finite-dimensional vector spaces and all the properties mentioned above holds in this case as well; for the case of infinite-dimensional spaces some care is needed, see Bochner integral.

Lebesgue ölçüsü

The primary examples of absolutely integrable functions are given when $ X $ is an interval of the real axis (or a domain of $ \mathbb{R}^n $), $ \mu $ the Lebesgue measure and $ \mathcal{A} $ the corresponding $ \sigma $-algebra of Lebesgue measurable functions.

Genelleştirilmiş integral

Consider an interval $ [a,b[ $ (resp. $ ]a,b] $, $ ]a,b[ $) where $ b $ might also be $ \infty $. Some authors use the term absolutely integrable functions for functions $ f $ which are Riemann-integrable on all intervals $ [a, \beta] $ with $ \beta<b $ (resp. $ ]\alpha, b] $, $ ]\alpha, \beta[ $) and for which

$ \lim_{\beta\uparrow b} \int_a^\beta \abs{f (x)}\, dx < \infty\, $

(and analogous conditions for the other cases). This implies the existence (and finiteness) of

$ \lim_{\beta\uparrow b} \int_a^\beta f (x)\, dx\, $

(and analogous limits for the other cases), which is often called Improper integral.

The converse is not true, namely the existence of the improper integral does not guarantee the absolute integrability, regardless whether we are dealing with Riemann-integrable or Lebesgue-integrable functions. An example is

$ \int_0^\infty \frac{\sin x}{x}\, dx\, . $


Kaynaklar

[1] C.D. Aliprantz, O. Burleinshaw, "Principles of real analysis" , North-Holland

[2] V.A. Il'in, E.G. Poznyak, "Fundamentals of mathematical analysis" , 1–2 , MIR (1982) (Translated from Russian)

[3] L.D. Kudryavtsev, "Mathematical analysis" , 1 , Moscow (1973) (In Russian)

[4] S.M. Nikol'skii, "A course of mathematical analysis" , 1 , MIR (1977)

[5] H.L. Royden, "Real analysis" , Macmillan (1968)

[6] W. Rudin, "Principles of mathematical analysis" , McGraw-Hill (1953)

[7| W. Rudin, "Real and complex analysis" , McGraw-Hill (1966) pp. 98

[8] L. Schwartz, "Cours d'analyse" , 1 , Hermann (1967)

[9] A.E. Taylor, "General theory of functions and integration" , Blaisdell (1965)

[10] A.C. Zaanen, "Integration" , North-Holland (1967)