"Matematiksel formüller" sayfasının sürümleri arasındaki fark

turkmathviki sitesinden
Atla: kullan, ara
(Yeni sayfa: "MediaWiki yazılımı matematiksel ifadelerin biçimlendirilmesinde LaTeX ve AMSLaTeX yazılımlarını içeren TeX yazılımını kullanmaktadır. Bazı matematikse...")
 
2. satır: 2. satır:
  
  
UNIQ0bd346bf6e656e70-item-541--QINU
+
<!--More precisely, MediaWiki filters the markup through [[w:Texvc|Texvc]], which in turn passes the commands to TeX for the actual [[w:Rendering (computer graphics)|render]]ing. Thus, only a limited part of the full TeX language is supported; see below for details.-->
 +
 
 
__TOC__
 
__TOC__
  
 
==Kodlama==
 
==Kodlama==
Matematiksel kodlar UNIQ0bd346bf6e656e70-code-0000021E-QINU kodları arasına yazılır.
+
Matematiksel kodlar <code><nowiki><math> ... </math></nowiki></code> kodları arasına yazılır.
Math markup goes inside UNIQ0bd346bf6e656e70-code-0000021F-QINU. The [[Help:Edit toolbar|edit toolbar]] has a button for this.
+
Math markup goes inside <code><nowiki><math> ... </math></nowiki></code>. The [[Help:Edit toolbar|edit toolbar]] has a button for this.
 +
 
 +
<!--Similarly to HTML, in TeX extra spaces and newlines are ignored.-->
  
UNIQ0bd346bf6e656e70-item-544--QINU
 
 
Tex kodları doğru yazılmadıkları zaman hata uyarısı verirler. Bu nedenle kodları doğru yazdığınızdan emin olmalısınız.
 
Tex kodları doğru yazılmadıkları zaman hata uyarısı verirler. Bu nedenle kodları doğru yazdığınızdan emin olmalısınız.
  
UNIQ0bd346bf6e656e70-item-545--QINU
+
<!--The TeX code has to be put literally: MediaWiki templates, predefined templates, and parameters cannot be used within math tags: pairs of double braces are ignored and  "#" gives an error message. However, math tags work in the then and else part of #if, etc. See {{tim|Demo of attempt to use parameters within TeX}}.-->
 +
 
 
==Sunum==
 
==Sunum==
  
UNIQ0bd346bf6e656e70-item-546--QINU
+
<!--The PNG images are black on white (not transparent). These colors, as well as font sizes and types, are independent of browser settings or CSS. Font sizes and types will often deviate from what HTML renders. Vertical alignment with the surrounding text can also be a problem. The [[Help:User style#CSS_selectors|css selector]] of the images is img.tex.-->
 +
 
 
It should be pointed out that most of these shortcomings have been addressed by [[m:Help talk:Formula#Maynard_Handley.27s_suggestions|Maynard Handley]], but have not been released yet.
 
It should be pointed out that most of these shortcomings have been addressed by [[m:Help talk:Formula#Maynard_Handley.27s_suggestions|Maynard Handley]], but have not been released yet.
  
The UNIQ0bd346bf6e656e70-code-00000223-QINU attribute of the PNG images (the text that is displayed if your browser can't display images; Internet Explorer shows it up in the hover box) is the wikitext that produced them, excluding the UNIQ0bd346bf6e656e70-code-00000224-QINU and UNIQ0bd346bf6e656e70-code-00000225-QINU.
+
The <code>alt</code> attribute of the PNG images (the text that is displayed if your browser can't display images; Internet Explorer shows it up in the hover box) is the wikitext that produced them, excluding the <code><nowiki><math></nowiki></code> and <code><nowiki></math></nowiki></code>.
  
Apart from function and operator names, as is customary in mathematics for variables, letters are in italics; digits are not. For other text, (like variable labels) to avoid being rendered in italics like variables, use UNIQ0bd346bf6e656e70-code-00000226-QINU or UNIQ0bd346bf6e656e70-code-00000227-QINU. For example,  UNIQ0bd346bf6e656e70-code-00000228-QINU gives <math>\mbox{abc}</math>.
+
Apart from function and operator names, as is customary in mathematics for variables, letters are in italics; digits are not. For other text, (like variable labels) to avoid being rendered in italics like variables, use <code>\mbox</code> or <code>\mathrm</code>. For example,  <code><nowiki><math>\mbox{abc}</math></nowiki></code> gives <math>\mbox{abc}</math>.
  
 
==TeX ve HTML==
 
==TeX ve HTML==
32. satır: 36. satır:
 
! HTML çıktısı
 
! HTML çıktısı
 
|-
 
|-
| UNIQ0bd346bf6e656e70-code-00000229-QINU
+
| <code><nowiki><math>\alpha\,</math></nowiki></code>
 
| <math>\alpha\,</math>
 
| <math>\alpha\,</math>
| UNIQ0bd346bf6e656e70-code-0000022A-QINU
+
| <code><nowiki>&amp;alpha;</nowiki></code>
 
| &alpha;
 
| &alpha;
 
|-
 
|-
| UNIQ0bd346bf6e656e70-code-0000022B-QINU
+
| <code><nowiki><math>\sqrt{2}</math></nowiki></code>
 
| <math>\sqrt{2}</math>
 
| <math>\sqrt{2}</math>
| UNIQ0bd346bf6e656e70-code-0000022C-QINU
+
| <code><nowiki>&amp;radic;2</nowiki></code>
 
| &radic;2
 
| &radic;2
 
|-
 
|-
| UNIQ0bd346bf6e656e70-code-0000022D-QINU
+
| <code><nowiki><math>\sqrt{1-e^2}</math></nowiki></code>
 
| <math>\sqrt{1-e^2}</math>
 
| <math>\sqrt{1-e^2}</math>
| UNIQ0bd346bf6e656e70-code-0000022E-QINU
+
| <code><nowiki>&amp;radic;<span style="text-decoration: overline;">1&amp;minus;''e''&amp;sup2;</div></nowiki></code>
 
| &radic;<span style="text-decoration: overline;">1&minus;''e''&sup2;</div>
 
| &radic;<span style="text-decoration: overline;">1&minus;''e''&sup2;</div>
 
|}
 
|}
  
  
UNIQ0bd346bf6e656e70-item-559--QINUas follows.
+
<!--The use of HTML instead of TeX is still under discussion. The arguments either way can be summarised-->
 +
as follows.
  
 
===HTML'nin avantajları===
 
===HTML'nin avantajları===
59. satır: 64. satır:
 
===TeX kullanımının avantajları===
 
===TeX kullanımının avantajları===
 
#Tex kalite bakımından HTML'den ileri bir yazılımdır.  
 
#Tex kalite bakımından HTML'den ileri bir yazılımdır.  
#Tex yazılımında "UNIQ0bd346bf6e656e70-code-00000230-QINU" kodlaması matematiksel değişken anlamına gelir. Fakat HTML'de "UNIQ0bd346bf6e656e70-code-00000231-QINU" kodlaması herhangi bir anlama gelebilir. Bu yüzden bilgiler daha kolay kaybolabilir.
+
#Tex yazılımında "<code><nowiki><math>x</math></nowiki></code>" kodlaması matematiksel değişken anlamına gelir. Fakat HTML'de "<code>x</code>" kodlaması herhangi bir anlama gelebilir. Bu yüzden bilgiler daha kolay kaybolabilir.
 
#TeX yazılımı özellikle formül yazımı için tasarlanmıştır. Bu nedenle daha kolay ve daha işlevseldir.
 
#TeX yazılımı özellikle formül yazımı için tasarlanmıştır. Bu nedenle daha kolay ve daha işlevseldir.
 
# One consequence of point 1 is that TeX can be transformed into HTML, but not vice-versa. This means that on the server side we can always transform a formula, based on its complexity and location within the text, user preferences, type of browser, etc. Therefore, where possible, all the benefits of HTML can be retained, together with the benefits of TeX. It's true that the current situation is not ideal, but that's not a good reason to drop information/contents. It's more a reason to [[#Bug_reports|help improve the situation]].
 
# One consequence of point 1 is that TeX can be transformed into HTML, but not vice-versa. This means that on the server side we can always transform a formula, based on its complexity and location within the text, user preferences, type of browser, etc. Therefore, where possible, all the benefits of HTML can be retained, together with the benefits of TeX. It's true that the current situation is not ideal, but that's not a good reason to drop information/contents. It's more a reason to [[#Bug_reports|help improve the situation]].
67. satır: 72. satır:
 
== Fonksiyonlar, semboller, özel karakterler ==
 
== Fonksiyonlar, semboller, özel karakterler ==
  
UNIQ0bd346bf6e656e70-item-562--QINU{| class="wikitable"
+
<!-- Eight symbols per line seems to be optimal-->
 +
{| class="wikitable"
 
! colspan="2" |<h3>Aksanlar/Vurgular</h3>
 
! colspan="2" |<h3>Aksanlar/Vurgular</h3>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-00000233-QINU
+
|<code>\acute{a} \grave{a} \hat{a} \tilde{a} \breve{a}</code>
 
|<math>\acute{a} \grave{a} \hat{a} \tilde{a} \breve{a}\,\!</math>
 
|<math>\acute{a} \grave{a} \hat{a} \tilde{a} \breve{a}\,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-00000234-QINU
+
|<code>\check{a} \bar{a} \ddot{a} \dot{a}</code>
 
|<math>\check{a} \bar{a} \ddot{a} \dot{a}\,\!</math>
 
|<math>\check{a} \bar{a} \ddot{a} \dot{a}\,\!</math>
 
|-
 
|-
80. satır: 86. satır:
 
<h3>Standart fonksiyonlar</h3>
 
<h3>Standart fonksiyonlar</h3>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-00000235-QINU
+
|<code>\sin a \cos b \tan c</code>
 
|<math>\sin a \cos b \tan c\,\!</math>
 
|<math>\sin a \cos b \tan c\,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-00000236-QINU
+
|<code>\sec d \csc e \cot f</code>
 
|<math>\sec d \csc e \cot f\,\!</math>
 
|<math>\sec d \csc e \cot f\,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-00000237-QINU
+
|<code>\arcsin h \arccos i \arctan j</code>
 
|<math>\arcsin h \arccos i \arctan j\,\!</math>
 
|<math>\arcsin h \arccos i \arctan j\,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-00000238-QINU
+
|<code>\sinh k \cosh l \tanh m \coth n</code>
 
|<math>\sinh k \cosh l \tanh m \coth n\,\!</math>
 
|<math>\sinh k \cosh l \tanh m \coth n\,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-00000239-QINU
+
|<code>\operatorname{sh}o \operatorname{ch}p \operatorname{th}q</code>
 
|<math>\operatorname{sh}o \operatorname{ch}p \operatorname{th}q\,\!</math>
 
|<math>\operatorname{sh}o \operatorname{ch}p \operatorname{th}q\,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-0000023A-QINU
+
|<code>\operatorname{argsh}r \operatorname{argch}s \operatorname{argth}t</code>
 
|<math>\operatorname{argsh}r \operatorname{argch}s \operatorname{argth}t\,\!</math>
 
|<math>\operatorname{argsh}r \operatorname{argch}s \operatorname{argth}t\,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-0000023B-QINU
+
|<code>\lim u \limsup v \liminf w \min x \max y</code>
 
|<math>\lim u \limsup v \liminf w \min x \max y\,\!</math>
 
|<math>\lim u \limsup v \liminf w \min x \max y\,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-0000023C-QINU
+
|<code>\inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g</code>
 
|<math>\inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g\,\!</math>
 
|<math>\inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g\,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-0000023D-QINU
+
|<code>\deg h \gcd i \Pr j \det k \hom l \arg m \dim n</code>
 
|<math>\deg h \gcd i \Pr j \det k \hom l \arg m \dim n\,\!</math>
 
|<math>\deg h \gcd i \Pr j \det k \hom l \arg m \dim n\,\!</math>
 
|-
 
|-
 
! colspan="2" | <h3>Modüler aritmatik</h3>
 
! colspan="2" | <h3>Modüler aritmatik</h3>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-0000023E-QINU
+
|<code>s_k \equiv 0 \pmod{m} a \bmod b</code>
 
|<math>s_k \equiv 0 \pmod{m} a \bmod b\,\!</math>
 
|<math>s_k \equiv 0 \pmod{m} a \bmod b\,\!</math>
 
|-
 
|-
116. satır: 122. satır:
 
<h3>Türevsel karakterler</h3>
 
<h3>Türevsel karakterler</h3>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-0000023F-QINU
+
|<code>\nabla \partial x dx \dot x \ddot y</code>
 
|<math>\nabla \partial x dx \dot x \ddot y\,\!</math>
 
|<math>\nabla \partial x dx \dot x \ddot y\,\!</math>
 
|-
 
|-
123. satır: 129. satır:
 
<h3>Kümeler</h3>
 
<h3>Kümeler</h3>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-00000240-QINU
+
|<code>\forall \exists \empty \emptyset \varnothing</code>
 
|<math>\forall \exists \empty \emptyset \varnothing\,\!</math>
 
|<math>\forall \exists \empty \emptyset \varnothing\,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-00000241-QINU
+
|<code>\in \ni \not \in \notin \subset \subseteq \supset \supseteq</code>
 
|<math>\in \ni \not \in \notin \subset \subseteq \supset \supseteq\,\!</math>
 
|<math>\in \ni \not \in \notin \subset \subseteq \supset \supseteq\,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-00000242-QINU
+
|<code>\cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus</code>
 
|<math>\cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus\,\!</math>
 
|<math>\cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus\,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-00000243-QINU
+
|<code>\sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup</code>
 
|<math>\sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup\,\!</math>
 
|<math>\sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup\,\!</math>
 
|-
 
|-
139. satır: 145. satır:
 
<h3>Operatör işaretler</h3>
 
<h3>Operatör işaretler</h3>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-00000244-QINU
+
|<code>+ \oplus \bigoplus \pm \mp - </code>
 
|<math>+ \oplus \bigoplus \pm \mp - \,\!</math>
 
|<math>+ \oplus \bigoplus \pm \mp - \,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-00000245-QINU
+
|<code>\times \otimes \bigotimes \cdot \circ \bullet \bigodot</code>
 
|<math>\times \otimes \bigotimes \cdot \circ \bullet \bigodot\,\!</math>
 
|<math>\times \otimes \bigotimes \cdot \circ \bullet \bigodot\,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-00000246-QINU
+
|<code>\star * / \div \frac{1}{2}</code>
 
|<math>\star * / \div \frac{1}{2}\,\!</math>
 
|<math>\star * / \div \frac{1}{2}\,\!</math>
 
|-
 
|-
152. satır: 158. satır:
 
<h3>Mantıksal ifadeler</h3>
 
<h3>Mantıksal ifadeler</h3>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-00000247-QINU
+
|<code>\land \wedge \bigwedge \bar{q} \to p</code>
 
|<math>\land \wedge \bigwedge \bar{q} \to p\,\!</math>
 
|<math>\land \wedge \bigwedge \bar{q} \to p\,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-00000248-QINU
+
|<code>\lor \vee \bigvee \lnot \neg q \And</code>
 
|<math>\lor \vee \bigvee \lnot \neg q \And\,\!</math>
 
|<math>\lor \vee \bigvee \lnot \neg q \And\,\!</math>
 
|-
 
|-
162. satır: 168. satır:
 
<h3>Kök alma</h3>
 
<h3>Kök alma</h3>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-00000249-QINU
+
|<code>\sqrt{2} \sqrt[n]{x}</code>
 
|<math>\sqrt{2} \sqrt[n]{x}\,\!</math>
 
|<math>\sqrt{2} \sqrt[n]{x}\,\!</math>
 
|-
 
|-
169. satır: 175. satır:
 
<h3>Eşitlik/Denklik/Benzerlik işaretleri</h3>
 
<h3>Eşitlik/Denklik/Benzerlik işaretleri</h3>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-0000024A-QINU
+
|<code>\sim \approx \simeq \cong \dot=  \overset{\underset{\mathrm{def}}{}}{=}</code>
 
|<math>\sim \approx \simeq \cong \dot=  \overset{\underset{\mathrm{def}}{}}{=}\,\!</math>
 
|<math>\sim \approx \simeq \cong \dot=  \overset{\underset{\mathrm{def}}{}}{=}\,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-0000024B-QINU
+
|<code>\le < \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto</code>
 
|<math>\le < \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto\,\!</math>
 
|<math>\le < \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto\,\!</math>
 
|-
 
|-
179. satır: 185. satır:
 
<h3>Geometrik</h3>
 
<h3>Geometrik</h3>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-0000024C-QINU
+
|<code><nowiki>\Diamond \Box \triangle \angle \perp \mid \nmid \| 45^\circ</nowiki></code>
 
|<math>\Diamond \, \Box \, \triangle \, \angle \perp \, \mid \; \nmid \, \| 45^\circ\,\!</math>
 
|<math>\Diamond \, \Box \, \triangle \, \angle \perp \, \mid \; \nmid \, \| 45^\circ\,\!</math>
 
|-
 
|-
186. satır: 192. satır:
 
<h3>Oklar/Bildiri ifadeleri</h3>
 
<h3>Oklar/Bildiri ifadeleri</h3>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-0000024D-QINU
+
|<code>\leftarrow \gets \rightarrow \to \not\to \leftrightarrow \longleftarrow \longrightarrow</code>
 
|<math>\leftarrow \gets \rightarrow \to \not\to \leftrightarrow \longleftarrow \longrightarrow\,\!</math>
 
|<math>\leftarrow \gets \rightarrow \to \not\to \leftrightarrow \longleftarrow \longrightarrow\,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-0000024E-QINU
+
|<code>\mapsto \longmapsto \hookrightarrow \hookleftarrow \nearrow \searrow \swarrow \nwarrow</code>
 
|<math>\mapsto \longmapsto \hookrightarrow \hookleftarrow \nearrow \searrow \swarrow \nwarrow\,\!</math>
 
|<math>\mapsto \longmapsto \hookrightarrow \hookleftarrow \nearrow \searrow \swarrow \nwarrow\,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-0000024F-QINU
+
|<code>\uparrow \downarrow \updownarrow \rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft</code>
 
|<math>\uparrow \downarrow \updownarrow \rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft\,\!</math>
 
|<math>\uparrow \downarrow \updownarrow \rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft\,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-00000250-QINU
+
|<code>\upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \Leftarrow \Rightarrow \Leftrightarrow \Longleftarrow</code>
 
|<math>\upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \Leftarrow \Rightarrow \Leftrightarrow \Longleftarrow\,\!</math>
 
|<math>\upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \Leftarrow \Rightarrow \Leftrightarrow \Longleftarrow\,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-00000251-QINU
+
|<code>\Longrightarrow \Longleftrightarrow (or \iff) \Uparrow \Downarrow \Updownarrow \leftleftarrows \leftrightarrows \Lleftarrow \leftarrowtail \looparrowleft </code>
 
|<math>\Longrightarrow \Longleftrightarrow \Uparrow \Downarrow \Updownarrow \leftleftarrows \leftrightarrows \Lleftarrow \leftarrowtail \looparrowleft \,\!</math>
 
|<math>\Longrightarrow \Longleftrightarrow \Uparrow \Downarrow \Updownarrow \leftleftarrows \leftrightarrows \Lleftarrow \leftarrowtail \looparrowleft \,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-00000252-QINU
+
|<code>\leftrightharpoons  \curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \Rrightarrow \rightarrowtail \looparrowright</code>
 
|<math>\leftrightharpoons  \curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \Rrightarrow \rightarrowtail \looparrowright\,\!</math>
 
|<math>\leftrightharpoons  \curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \Rrightarrow \rightarrowtail \looparrowright\,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-00000253-QINU
+
|<code>\curvearrowright \circlearrowright \Rsh \downdownarrows \multimap \leftrightsquigarrow \rightsquigarrow \nLeftarrow \nleftrightarrow \nRightarrow</code>
 
|<math>\curvearrowright \circlearrowright \Rsh \downdownarrows \multimap \leftrightsquigarrow \rightsquigarrow \nLeftarrow \nleftrightarrow \nRightarrow\,\!</math>
 
|<math>\curvearrowright \circlearrowright \Rsh \downdownarrows \multimap \leftrightsquigarrow \rightsquigarrow \nLeftarrow \nleftrightarrow \nRightarrow\,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-00000254-QINU
+
|<code>\nLeftrightarrow \longleftrightarrow</code>
 
|<math>\nLeftrightarrow \longleftrightarrow\,\!</math>
 
|<math>\nLeftrightarrow \longleftrightarrow\,\!</math>
 
|-
 
|-
 
! colspan="2" | <h3>Özel</h3>
 
! colspan="2" | <h3>Özel</h3>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-00000255-QINU
+
|<code>\eth \S \P \% \dagger \ddagger \ldots \cdots</code>
 
|<math>\eth \S \P \% \dagger \ddagger \ldots \cdots\,\!</math>
 
|<math>\eth \S \P \% \dagger \ddagger \ldots \cdots\,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-00000256-QINU
+
|<code>\smile \frown \wr \triangleleft \triangleright \infty \bot \top</code>
 
|<math>\smile \frown \wr \triangleleft \triangleright \infty \bot \top\,\!</math>
 
|<math>\smile \frown \wr \triangleleft \triangleright \infty \bot \top\,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-00000257-QINU
+
|<code>\vdash \vDash \Vdash \models \lVert \rVert \imath \hbar</code>
 
|<math>\vdash \vDash \Vdash \models \lVert \rVert \imath \hbar\,\!</math>
 
|<math>\vdash \vDash \Vdash \models \lVert \rVert \imath \hbar\,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-00000258-QINU
+
|<code>\ell \mho \Finv \Re \Im \wp \complement \diamondsuit</code>
 
|<math>\ell \mho \Finv \Re \Im \wp \complement \diamondsuit\,\!</math>
 
|<math>\ell \mho \Finv \Re \Im \wp \complement \diamondsuit\,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-00000259-QINU
+
|<code>\heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp</code>
 
|<math>\heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp\,\!</math>
 
|<math>\heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp\,\!</math>
 
|-
 
|-
231. satır: 237. satır:
 
<h3>Unsorted (new stuff)</h3>
 
<h3>Unsorted (new stuff)</h3>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-0000025A-QINU
+
|<code> \vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown</code>
 
|<math> \vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown</math>
 
|<math> \vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-0000025B-QINU
+
|<code> \blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge</code>
 
|<math> \blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge</math>
 
|<math> \blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-0000025C-QINU
+
|<code> \veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes</code>
 
|<math> \veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes</math>
 
|<math> \veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-0000025D-QINU
+
|<code> \rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant</code>
 
|<math> \rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant</math>
 
|<math> \rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-0000025E-QINU
+
|<code> \eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot \risingdotseq</code>
 
|<math> \eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot \risingdotseq</math>
 
|<math> \eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot \risingdotseq</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-0000025F-QINU
+
|<code> \fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox \vartriangleleft</code>
 
|<math> \fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox \vartriangleleft</math>
 
|<math> \fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox \vartriangleleft</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-00000260-QINU
+
|<code> \Vvdash \bumpeq \Bumpeq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox \eqsim \gtrdot</code>
 
|<math> \Vvdash \bumpeq \Bumpeq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox \eqsim \gtrdot</math>
 
|<math> \Vvdash \bumpeq \Bumpeq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox \eqsim \gtrdot</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-00000261-QINU
+
|<code> \ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq</code>
 
|<math> \ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq</math>
 
|<math> \ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-00000262-QINU
+
|<code> \Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \shortparallel \between \pitchfork</code>
 
|<math> \Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \shortparallel \between \pitchfork</math>
 
|<math> \Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \shortparallel \between \pitchfork</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-00000263-QINU
+
|<code> \varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq</code>
 
|<math> \varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq</math>
 
|<math> \varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-00000264-QINU
+
|<code> \lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid</code>
 
|<math> \lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid</math>
 
|<math> \lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-00000265-QINU
+
|<code> \nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \varsubsetneq \subsetneqq \varsubsetneqq \ngtr</code>
 
|<math> \nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \varsubsetneq \subsetneqq \varsubsetneqq \ngtr</math>
 
|<math> \nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \varsubsetneq \subsetneqq \varsubsetneqq \ngtr</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-00000266-QINU
+
|<code> \ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq</code>
 
|<math> \ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq</math>
 
|<math> \ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-00000267-QINU
+
|<code> \succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq</code>
 
|<math> \succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq</math>
 
|<math> \succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-00000268-QINU
+
|<code> \nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq</code>
 
|<math> \nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq</math>
 
|<math> \nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-00000269-QINU
+
|<code>\jmath \surd \ast \uplus \diamond \bigtriangleup \bigtriangledown \ominus</code>
 
|<math>\jmath \surd \ast \uplus \diamond \bigtriangleup \bigtriangledown \ominus\,\!</math>
 
|<math>\jmath \surd \ast \uplus \diamond \bigtriangleup \bigtriangledown \ominus\,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-0000026A-QINU
+
|<code>\oslash \odot \bigcirc \amalg \prec \succ \preceq \succeq</code>
 
|<math>\oslash \odot \bigcirc \amalg \prec \succ \preceq \succeq\,\!</math>
 
|<math>\oslash \odot \bigcirc \amalg \prec \succ \preceq \succeq\,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-0000026B-QINU
+
|<code>\dashv \asymp \doteq \parallel</code>
 
|<math>\dashv \asymp \doteq \parallel\,\!</math>
 
|<math>\dashv \asymp \doteq \parallel\,\!</math>
 
|}
 
|}
293. satır: 299. satır:
 
|-
 
|-
 
|-
 
|-
|Superscript||UNIQ0bd346bf6e656e70-code-0000026C-QINU||<math>a^2</math>||<math>a^2 \,\!</math>
+
|Superscript||<code>a^2</code>||<math>a^2</math>||<math>a^2 \,\!</math>
 
|-
 
|-
|Subscript||UNIQ0bd346bf6e656e70-code-0000026D-QINU||<math>a_2</math>||<math>a_2 \,\!</math>
+
|Subscript||<code>a_2</code>||<math>a_2</math>||<math>a_2 \,\!</math>
 
|-
 
|-
|rowspan=2|Grouping||UNIQ0bd346bf6e656e70-code-0000026E-QINU||<math>a^{2+2}</math>||<math>a^{2+2}\,\!</math>
+
|rowspan=2|Grouping||<code>a^{2+2}</code>||<math>a^{2+2}</math>||<math>a^{2+2}\,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-0000026F-QINU||<math>a_{i,j}</math>||<math>a_{i,j}\,\!</math>
+
|<code>a_{i,j}</code>||<math>a_{i,j}</math>||<math>a_{i,j}\,\!</math>
 
|-
 
|-
|Combining sub & super||UNIQ0bd346bf6e656e70-code-00000270-QINU||colspan=2|<math>x_2^3</math>
+
|Combining sub & super||<code>x_2^3</code>||colspan=2|<math>x_2^3</math>
 
|-
 
|-
|rowspan="2"|Preceding and/or Additional sub & super||UNIQ0bd346bf6e656e70-code-00000271-QINU||colspan=2|<math>\sideset{_1^2}{_3^4}\prod_a^b</math>
+
|rowspan="2"|Preceding and/or Additional sub & super||<code>\sideset{_1^2}{_3^4}\prod_a^b</code>||colspan=2|<math>\sideset{_1^2}{_3^4}\prod_a^b</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-00000272-QINU||colspan=2|<math>{}_1^2\!\Omega_3^4</math>
+
|<code>{}_1^2\!\Omega_3^4</code>||colspan=2|<math>{}_1^2\!\Omega_3^4</math>
 
|-
 
|-
 
|rowspan="4"|Stacking
 
|rowspan="4"|Stacking
|UNIQ0bd346bf6e656e70-code-00000273-QINU||colspan="2"|<math>\overset{\alpha}{\omega}</math>
+
|<code>\overset{\alpha}{\omega}</code>||colspan="2"|<math>\overset{\alpha}{\omega}</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-00000274-QINU||colspan="2"|<math>\underset{\alpha}{\omega}</math>
+
|<code>\underset{\alpha}{\omega}</code>||colspan="2"|<math>\underset{\alpha}{\omega}</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-00000275-QINU||colspan="2"|<math>\overset{\alpha}{\underset{\gamma}{\omega}}</math>
+
|<code>\overset{\alpha}{\underset{\gamma}{\omega}}</code>||colspan="2"|<math>\overset{\alpha}{\underset{\gamma}{\omega}}</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-00000276-QINU||colspan="2"|<math>\stackrel{\alpha}{\omega}</math>
+
|<code>\stackrel{\alpha}{\omega}</code>||colspan="2"|<math>\stackrel{\alpha}{\omega}</math>
 
|-
 
|-
|Derivative (forced PNG)||UNIQ0bd346bf6e656e70-code-00000277-QINU||&nbsp;||<math>x', y'', f', f''\!</math>
+
|Derivative (forced PNG)||<code>x', y'', f', f''\!</code>||&nbsp;||<math>x', y'', f', f''\!</math>
 
|-
 
|-
|Derivative (f in italics may overlap primes in HTML)||UNIQ0bd346bf6e656e70-code-00000278-QINU||<math>x', y'', f', f''</math>||<math>x', y'', f', f''\!</math>
+
|Derivative (f in italics may overlap primes in HTML)||<code>x', y'', f', f''</code>||<math>x', y'', f', f''</math>||<math>x', y'', f', f''\!</math>
 
|-
 
|-
|Derivative (HTML-yanlış)||UNIQ0bd346bf6e656e70-code-00000279-QINU||<math>x^\prime, y^{\prime\prime}</math>||<math>x^\prime, y^{\prime\prime}\,\!</math>
+
|Derivative (HTML-yanlış)||<code>x^\prime, y^{\prime\prime}</code>||<math>x^\prime, y^{\prime\prime}</math>||<math>x^\prime, y^{\prime\prime}\,\!</math>
 
|-
 
|-
|Derivative (PNG-yanlış)||UNIQ0bd346bf6e656e70-code-0000027A-QINU||<math>x\prime, y\prime\prime</math>||<math>x\prime, y\prime\prime\,\!</math>
+
|Derivative (PNG-yanlış)||<code>x\prime, y\prime\prime</code>||<math>x\prime, y\prime\prime</math>||<math>x\prime, y\prime\prime\,\!</math>
 
|-
 
|-
|Derivative dots||UNIQ0bd346bf6e656e70-code-0000027B-QINU||colspan=2|<math>\dot{x}, \ddot{x}</math>
+
|Derivative dots||<code>\dot{x}, \ddot{x}</code>||colspan=2|<math>\dot{x}, \ddot{x}</math>
 
|-
 
|-
|rowspan="3"|Underlines, overlines, vectors||UNIQ0bd346bf6e656e70-code-0000027C-QINU||colspan=2|<math>\hat a \ \bar b \ \vec c</math>
+
|rowspan="3"|Underlines, overlines, vectors||<code>\hat a \ \bar b \ \vec c</code>||colspan=2|<math>\hat a \ \bar b \ \vec c</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-0000027D-QINU||colspan=2|<math>\overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f}</math>
+
|<code>\overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f}</code>||colspan=2|<math>\overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f}</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-0000027E-QINU||colspan=2|<math>\overline{g h i} \ \underline{j k l}</math>
+
|<code>\overline{g h i} \ \underline{j k l}</code>||colspan=2|<math>\overline{g h i} \ \underline{j k l}</math>
 
|-
 
|-
|Arrows||UNIQ0bd346bf6e656e70-code-0000027F-QINU||colspan=2|<math> A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C</math>
+
|Arrows||<code> A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C</code>||colspan=2|<math> A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C</math>
 
|-
 
|-
|Overbraces||UNIQ0bd346bf6e656e70-code-00000280-QINU||colspan=2|<math>\overbrace{ 1+2+\cdots+100 }^{5050}</math>
+
|Overbraces||<code>\overbrace{ 1+2+\cdots+100 }^{5050}</code>||colspan=2|<math>\overbrace{ 1+2+\cdots+100 }^{5050}</math>
 
|-
 
|-
|Underbraces||UNIQ0bd346bf6e656e70-code-00000281-QINU||colspan=2|<math>\underbrace{ a+b+\cdots+z }_{26}</math>
+
|Underbraces||<code>\underbrace{ a+b+\cdots+z }_{26}</code>||colspan=2|<math>\underbrace{ a+b+\cdots+z }_{26}</math>
 
|-
 
|-
|Sum||UNIQ0bd346bf6e656e70-code-00000282-QINU||colspan=2|<math>\sum_{k=1}^N k^2</math>
+
|Sum||<code>\sum_{k=1}^N k^2</code>||colspan=2|<math>\sum_{k=1}^N k^2</math>
 
|-
 
|-
|Sum (force&nbsp;UNIQ0bd346bf6e656e70-code-00000283-QINU)||UNIQ0bd346bf6e656e70-code-00000284-QINU||colspan=2|<math>\textstyle \sum_{k=1}^N k^2</math>
+
|Sum (force&nbsp;<code>\textstyle</code>)||<code>\textstyle \sum_{k=1}^N k^2 </code>||colspan=2|<math>\textstyle \sum_{k=1}^N k^2</math>
 
|-
 
|-
|Product||UNIQ0bd346bf6e656e70-code-00000285-QINU||colspan=2|<math>\prod_{i=1}^N x_i</math>
+
|Product||<code>\prod_{i=1}^N x_i</code>||colspan=2|<math>\prod_{i=1}^N x_i</math>
 
|-
 
|-
|Product (force&nbsp;UNIQ0bd346bf6e656e70-code-00000286-QINU)||UNIQ0bd346bf6e656e70-code-00000287-QINU||colspan=2|<math>\textstyle \prod_{i=1}^N x_i</math>
+
|Product (force&nbsp;<code>\textstyle</code>)||<code>\textstyle \prod_{i=1}^N x_i</code>||colspan=2|<math>\textstyle \prod_{i=1}^N x_i</math>
 
|-
 
|-
|Coproduct||UNIQ0bd346bf6e656e70-code-00000288-QINU||colspan=2|<math>\coprod_{i=1}^N x_i</math>
+
|Coproduct||<code>\coprod_{i=1}^N x_i</code>||colspan=2|<math>\coprod_{i=1}^N x_i</math>
 
|-
 
|-
|Coproduct (force&nbsp;UNIQ0bd346bf6e656e70-code-00000289-QINU)||UNIQ0bd346bf6e656e70-code-0000028A-QINU||colspan=2|<math>\textstyle \coprod_{i=1}^N x_i</math>
+
|Coproduct (force&nbsp;<code>\textstyle</code>)||<code>\textstyle \coprod_{i=1}^N x_i</code>||colspan=2|<math>\textstyle \coprod_{i=1}^N x_i</math>
 
|-
 
|-
|Limit||UNIQ0bd346bf6e656e70-code-0000028B-QINU||colspan=2|<math>\lim_{n \to \infty}x_n</math>
+
|Limit||<code>\lim_{n \to \infty}x_n</code>||colspan=2|<math>\lim_{n \to \infty}x_n</math>
 
|-
 
|-
|Limit (force&nbsp;UNIQ0bd346bf6e656e70-code-0000028C-QINU)||UNIQ0bd346bf6e656e70-code-0000028D-QINU||colspan=2|<math>\textstyle \lim_{n \to \infty}x_n</math>
+
|Limit (force&nbsp;<code>\textstyle</code>)||<code>\textstyle \lim_{n \to \infty}x_n</code>||colspan=2|<math>\textstyle \lim_{n \to \infty}x_n</math>
 
|-
 
|-
|Integral||UNIQ0bd346bf6e656e70-code-0000028E-QINU||colspan=2|<math>\int_{-N}^{N} e^x\, dx</math>
+
|Integral||<code>\int_{-N}^{N} e^x\, dx</code>||colspan=2|<math>\int_{-N}^{N} e^x\, dx</math>
 
|-
 
|-
|İntegral (force&nbsp;UNIQ0bd346bf6e656e70-code-0000028F-QINU)||UNIQ0bd346bf6e656e70-code-00000290-QINU||colspan=2|<math>\textstyle \int_{-N}^{N} e^x\, dx</math>
+
|İntegral (force&nbsp;<code>\textstyle</code>)||<code>\textstyle \int_{-N}^{N} e^x\, dx</code>||colspan=2|<math>\textstyle \int_{-N}^{N} e^x\, dx</math>
 
|-
 
|-
|Çift katlı integral||UNIQ0bd346bf6e656e70-code-00000291-QINU||colspan=2|<math>\iint_{D}^{W} \, dx\,dy</math>
+
|Çift katlı integral||<code>\iint_{D}^{W} \, dx\,dy</code>||colspan=2|<math>\iint_{D}^{W} \, dx\,dy</math>
 
|-
 
|-
|Üç katlı integral||UNIQ0bd346bf6e656e70-code-00000292-QINU||colspan=2|<math>\iiint_{E}^{V} \, dx\,dy\,dz</math>
+
|Üç katlı integral||<code>\iiint_{E}^{V} \, dx\,dy\,dz</code>||colspan=2|<math>\iiint_{E}^{V} \, dx\,dy\,dz</math>
 
|-
 
|-
|Dört katlı integral||UNIQ0bd346bf6e656e70-code-00000293-QINU||colspan=2|<math>\iiiint_{F}^{U} \, dx\,dy\,dz\,dt</math>
+
|Dört katlı integral||<code>\iiiint_{F}^{U} \, dx\,dy\,dz\,dt</code>||colspan=2|<math>\iiiint_{F}^{U} \, dx\,dy\,dz\,dt</math>
 
|-
 
|-
|Path integral||UNIQ0bd346bf6e656e70-code-00000294-QINU||colspan=2|<math>\oint_{C} x^3\, dx + 4y^2\, dy</math>
+
|Path integral||<code>\oint_{C} x^3\, dx + 4y^2\, dy</code>||colspan=2|<math>\oint_{C} x^3\, dx + 4y^2\, dy</math>
 
|-
 
|-
|Intersections||UNIQ0bd346bf6e656e70-code-00000295-QINU||colspan=2|<math>\bigcap_1^{n} p</math>
+
|Intersections||<code>\bigcap_1^{n} p</code>||colspan=2|<math>\bigcap_1^{n} p</math>
 
|-
 
|-
|Unions||UNIQ0bd346bf6e656e70-code-00000296-QINU||colspan=2|<math>\bigcup_1^{k} p</math>
+
|Unions||<code>\bigcup_1^{k} p</code>||colspan=2|<math>\bigcup_1^{k} p</math>
 
|}
 
|}
  
382. satır: 388. satır:
 
<tr>
 
<tr>
 
<td>Fractions</td>
 
<td>Fractions</td>
<td>UNIQ0bd346bf6e656e70-code-00000297-QINU</td>
+
<td><code>\frac{2}{4}=0.5</code></td>
 
<td><math>\frac{2}{4}=0.5</math></td>
 
<td><math>\frac{2}{4}=0.5</math></td>
 
</tr>
 
</tr>
388. satır: 394. satır:
 
<tr>
 
<tr>
 
<td>Small Fractions</td>
 
<td>Small Fractions</td>
<td>UNIQ0bd346bf6e656e70-code-00000298-QINU</td>
+
<td><code>\tfrac{2}{4} = 0.5</code></td>
 
<td><math>\tfrac{2}{4} = 0.5</math></td>
 
<td><math>\tfrac{2}{4} = 0.5</math></td>
 
</tr>
 
</tr>
394. satır: 400. satır:
 
<tr>
 
<tr>
 
<td>Large (normal) Fractions</td>
 
<td>Large (normal) Fractions</td>
<td>UNIQ0bd346bf6e656e70-code-00000299-QINU</td>
+
<td><code>\dfrac{2}{4} = 0.5</code></td>
 
<td><math>\dfrac{2}{4} = 0.5</math></td>
 
<td><math>\dfrac{2}{4} = 0.5</math></td>
 
</tr>
 
</tr>
400. satır: 406. satır:
 
<tr>
 
<tr>
 
<td>Large (nestled) Fractions</td>
 
<td>Large (nestled) Fractions</td>
<td>UNIQ0bd346bf6e656e70-code-0000029A-QINU</td>
+
<td><code>\cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a</code></td>
 
<td><math>\cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a</math></td>
 
<td><math>\cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a</math></td>
 
</tr>
 
</tr>
406. satır: 412. satır:
 
<tr>
 
<tr>
 
<td>Binomial coefficients</td>
 
<td>Binomial coefficients</td>
<td>UNIQ0bd346bf6e656e70-code-0000029B-QINU</td>
+
<td><code>\binom{n}{k}</code></td>
 
<td><math>\binom{n}{k}</math></td>
 
<td><math>\binom{n}{k}</math></td>
 
</tr>
 
</tr>
413. satır: 419. satır:
 
<tr>
 
<tr>
 
<td>Small Binomial coefficients</td>
 
<td>Small Binomial coefficients</td>
<td>UNIQ0bd346bf6e656e70-code-0000029C-QINU</td>
+
<td><code>\tbinom{n}{k}</code></td>
 
<td><math>\tbinom{n}{k}</math></td>
 
<td><math>\tbinom{n}{k}</math></td>
 
</tr>
 
</tr>
420. satır: 426. satır:
 
<tr>
 
<tr>
 
<td>Large (normal) Binomial coefficients</td>
 
<td>Large (normal) Binomial coefficients</td>
<td>UNIQ0bd346bf6e656e70-code-0000029D-QINU</td>
+
<td><code>\dbinom{n}{k}</code></td>
 
<td><math>\dbinom{n}{k}</math></td>
 
<td><math>\dbinom{n}{k}</math></td>
 
</tr>
 
</tr>
426. satır: 432. satır:
 
<tr>
 
<tr>
 
<td rowspan="7">Matrices</td>
 
<td rowspan="7">Matrices</td>
<td>UNIQ0bd346bf6e656e70-pre-0000029E-QINU</td>
+
<td><pre>\begin{matrix}
 +
  x & y \\
 +
  z & v
 +
\end{matrix}</pre></td>
 
<td><math>\begin{matrix} x & y \\ z & v
 
<td><math>\begin{matrix} x & y \\ z & v
 
\end{matrix}</math></td>
 
\end{matrix}</math></td>
432. satır: 441. satır:
  
 
<tr>
 
<tr>
<td>UNIQ0bd346bf6e656e70-pre-0000029F-QINU</td>
+
<td><pre>\begin{vmatrix}
 +
  x & y \\
 +
  z & v
 +
\end{vmatrix}</pre></td>
 
<td><math>\begin{vmatrix} x & y \\ z & v
 
<td><math>\begin{vmatrix} x & y \\ z & v
 
\end{vmatrix}</math></td>
 
\end{vmatrix}</math></td>
438. satır: 450. satır:
  
 
<tr>
 
<tr>
<td>UNIQ0bd346bf6e656e70-pre-000002A0-QINU</td>
+
<td><pre>\begin{Vmatrix}
 +
  x & y \\
 +
  z & v
 +
\end{Vmatrix}</pre></td>
 
<td><math>\begin{Vmatrix} x & y \\ z & v
 
<td><math>\begin{Vmatrix} x & y \\ z & v
 
\end{Vmatrix}</math></td>
 
\end{Vmatrix}</math></td>
444. satır: 459. satır:
  
 
<tr>
 
<tr>
<td>UNIQ0bd346bf6e656e70-pre-000002A1-QINU</td>
+
<td><pre>\begin{bmatrix}
 +
  0      & \cdots & 0      \\
 +
  \vdots & \ddots & \vdots \\
 +
  0      & \cdots & 0
 +
\end{bmatrix}</pre></td>
 
<td><math>\begin{bmatrix} 0 & \cdots & 0 \\ \vdots
 
<td><math>\begin{bmatrix} 0 & \cdots & 0 \\ \vdots
 
& \ddots & \vdots \\ 0 & \cdots &
 
& \ddots & \vdots \\ 0 & \cdots &
451. satır: 470. satır:
  
 
<tr>
 
<tr>
<td>UNIQ0bd346bf6e656e70-pre-000002A2-QINU</td>
+
<td><pre>\begin{Bmatrix}
 +
  x & y \\
 +
  z & v
 +
\end{Bmatrix}</pre></td>
 
<td><math>\begin{Bmatrix} x & y \\ z & v
 
<td><math>\begin{Bmatrix} x & y \\ z & v
 
\end{Bmatrix}</math></td>
 
\end{Bmatrix}</math></td>
457. satır: 479. satır:
  
 
<tr>
 
<tr>
<td>UNIQ0bd346bf6e656e70-pre-000002A3-QINU</td>
+
<td><pre>\begin{pmatrix}
 +
  x & y \\
 +
  z & v
 +
\end{pmatrix}</pre></td>
 
<td><math>\begin{pmatrix} x & y \\ z & v
 
<td><math>\begin{pmatrix} x & y \\ z & v
 
\end{pmatrix}</math></td>
 
\end{pmatrix}</math></td>
463. satır: 488. satır:
  
 
<tr>
 
<tr>
<td>UNIQ0bd346bf6e656e70-pre-000002A4-QINU</td>
+
<td><pre>
 +
\bigl( \begin{smallmatrix}
 +
  a&b\\ c&d
 +
\end{smallmatrix} \bigr)
 +
</pre></td>
 
<td><math>
 
<td><math>
 
\bigl( \begin{smallmatrix}
 
\bigl( \begin{smallmatrix}
475. satır: 504. satır:
 
<tr>
 
<tr>
 
<td>Case distinctions</td>
 
<td>Case distinctions</td>
<td>UNIQ0bd346bf6e656e70-pre-000002A5-QINU</td>
+
<td><pre>
 +
f(n) =
 +
\begin{cases}
 +
  n/2,  & \mbox{if }n\mbox{ is even} \\
 +
  3n+1, & \mbox{if }n\mbox{ is odd}
 +
\end{cases}</pre></td>
 
<td><math>f(n) =  
 
<td><math>f(n) =  
 
\begin{cases}
 
\begin{cases}
485. satır: 519. satır:
 
<tr>
 
<tr>
 
<td rowspan="2">Multiline equations</td>
 
<td rowspan="2">Multiline equations</td>
<td>UNIQ0bd346bf6e656e70-pre-000002A6-QINU</td>
+
<td><pre>
 +
\begin{align}
 +
f(x) & = (a+b)^2 \\
 +
      & = a^2+2ab+b^2 \\
 +
\end{align}
 +
</pre></td>
 
<td><math>
 
<td><math>
 
\begin{align}
 
\begin{align}
495. satır: 534. satır:
  
 
<tr>
 
<tr>
<td>UNIQ0bd346bf6e656e70-pre-000002A7-QINU</td>
+
<td><pre>
 +
\begin{alignat}{2}
 +
f(x) & = (a-b)^2 \\
 +
      & = a^2-2ab+b^2 \\
 +
\end{alignat}
 +
</pre></td>
 
<td><math>
 
<td><math>
 
\begin{alignat}{2}
 
\begin{alignat}{2}
505. satır: 549. satır:
 
<tr>
 
<tr>
 
<td>Multiline equations <small>(must define number of colums used ({lcr}) <small>(should not be used unless needed)</small></small></td>
 
<td>Multiline equations <small>(must define number of colums used ({lcr}) <small>(should not be used unless needed)</small></small></td>
<td>UNIQ0bd346bf6e656e70-pre-000002A8-QINU</td>
+
<td><pre>
 +
\begin{array}{lcl}
 +
  z        & = & a \\
 +
  f(x,y,z) & = & x + y + z 
 +
\end{array}</pre></td>
 
<td><math>\begin{array}{lcl}
 
<td><math>\begin{array}{lcl}
 
   z        & = & a \\
 
   z        & = & a \\
514. satır: 562. satır:
 
<tr>
 
<tr>
 
<td>Multiline equations (more)</td>
 
<td>Multiline equations (more)</td>
<td>UNIQ0bd346bf6e656e70-pre-000002A9-QINU</td>
+
<td><pre>
 +
\begin{array}{lcr}
 +
  z        & = & a \\
 +
  f(x,y,z) & = & x + y + z   
 +
\end{array}</pre></td>
 
<td><math>\begin{array}{lcr}
 
<td><math>\begin{array}{lcr}
 
   z        & = & a \\
 
   z        & = & a \\
523. satır: 575. satır:
 
<tr>
 
<tr>
 
<td>Breaking up a long expression so that it wraps when necessary</td>
 
<td>Breaking up a long expression so that it wraps when necessary</td>
<td>UNIQ0bd346bf6e656e70-pre-000002AA-QINU
+
<td><pre>
 +
<nowiki>
 +
<math>f(x) \,\!</math>
 +
<math>= \sum_{n=0}^\infty a_n x^n </math>
 +
<math>= a_0+a_1x+a_2x^2+\cdots</math>
 +
</nowiki>
 +
</pre>
 
</td>
 
</td>
 
<td>
 
<td>
532. satır: 590. satır:
 
<tr>
 
<tr>
 
<td>Simultaneous equations</td>
 
<td>Simultaneous equations</td>
<td>UNIQ0bd346bf6e656e70-pre-000002AB-QINU</td>
+
<td><pre>\begin{cases}
 +
    3x + 5y +  z \\
 +
    7x - 2y + 4z \\
 +
  -6x + 3y + 2z
 +
\end{cases}</pre></td>
 
<td><math>\begin{cases} 3x + 5y + z \\ 7x - 2y + 4z \\ -6x + 3y + 2z \end{cases}</math></td>
 
<td><math>\begin{cases} 3x + 5y + z \\ 7x - 2y + 4z \\ -6x + 3y + 2z \end{cases}</math></td>
 
</tr>
 
</tr>
543. satır: 605. satır:
 
! colspan="2" | Greek alphabet
 
! colspan="2" | Greek alphabet
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002AC-QINU
+
|<code><nowiki>\Alpha \Beta \Gamma \Delta \Epsilon \Zeta</nowiki></code>
 
|<math>\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \,\!</math>
 
|<math>\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002AD-QINU
+
|<code><nowiki>\Eta \Theta \Iota \Kappa \Lambda \Mu</nowiki></code>
 
|<math>\Eta \Theta \Iota \Kappa \Lambda \Mu \,\!</math>
 
|<math>\Eta \Theta \Iota \Kappa \Lambda \Mu \,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002AE-QINU
+
|<code><nowiki>\Nu \Xi \Pi \Rho \Sigma \Tau</nowiki></code>
 
|<math>\Nu \Xi \Pi \Rho \Sigma \Tau\,\!</math>
 
|<math>\Nu \Xi \Pi \Rho \Sigma \Tau\,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002AF-QINU
+
|<code><nowiki>\Upsilon \Phi \Chi \Psi \Omega</nowiki></code>
 
|<math>\Upsilon \Phi \Chi \Psi \Omega \,\!</math>
 
|<math>\Upsilon \Phi \Chi \Psi \Omega \,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002B0-QINU
+
|<code><nowiki>\alpha \beta \gamma \delta \epsilon \zeta</nowiki></code>
 
|<math>\alpha \beta \gamma \delta \epsilon \zeta \,\!</math>
 
|<math>\alpha \beta \gamma \delta \epsilon \zeta \,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002B1-QINU
+
|<code><nowiki>\eta \theta \iota \kappa \lambda \mu</nowiki></code>
 
|<math>\eta \theta \iota \kappa \lambda \mu \,\!</math>
 
|<math>\eta \theta \iota \kappa \lambda \mu \,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002B2-QINU
+
|<code><nowiki>\nu \xi \pi \rho \sigma \tau</nowiki></code>
 
|<math>\nu \xi \pi \rho \sigma \tau \,\!</math>
 
|<math>\nu \xi \pi \rho \sigma \tau \,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002B3-QINU
+
|<code><nowiki>\upsilon \phi \chi \psi \omega</nowiki></code>
 
|<math>\upsilon \phi \chi \psi \omega \,\!</math>
 
|<math>\upsilon \phi \chi \psi \omega \,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002B4-QINU
+
|<code><nowiki>\varepsilon \digamma \vartheta \varkappa</nowiki></code>
 
|<math>\varepsilon \digamma \vartheta \varkappa \,\!</math>
 
|<math>\varepsilon \digamma \vartheta \varkappa \,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002B5-QINU
+
|<code><nowiki>\varpi \varrho \varsigma \varphi</nowiki></code>
 
|<math>\varpi \varrho \varsigma \varphi\,\!</math>
 
|<math>\varpi \varrho \varsigma \varphi\,\!</math>
 
|-
 
|-
 
! colspan="2" | Blackboard Bold/Scripts
 
! colspan="2" | Blackboard Bold/Scripts
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002B6-QINU
+
|<code><nowiki>\mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G}</nowiki></code>
 
|<math>\mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G} \,\!</math>
 
|<math>\mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G} \,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002B7-QINU
+
|<code><nowiki>\mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M}</nowiki></code>
 
|<math>\mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M} \,\!</math>
 
|<math>\mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M} \,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002B8-QINU
+
|<code><nowiki>\mathbb{N} \mathbb{O} \mathbb{P} \mathbb{Q} \mathbb{R} \mathbb{S} \mathbb{T}</nowiki></code>
 
|<math>\mathbb{N} \mathbb{O} \mathbb{P} \mathbb{Q} \mathbb{R} \mathbb{S} \mathbb{T} \,\!</math>
 
|<math>\mathbb{N} \mathbb{O} \mathbb{P} \mathbb{Q} \mathbb{R} \mathbb{S} \mathbb{T} \,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002B9-QINU
+
|<code><nowiki>\mathbb{U} \mathbb{V} \mathbb{W} \mathbb{X} \mathbb{Y} \mathbb{Z}</nowiki></code>
 
|<math>\mathbb{U} \mathbb{V} \mathbb{W} \mathbb{X} \mathbb{Y} \mathbb{Z}\,\!</math>
 
|<math>\mathbb{U} \mathbb{V} \mathbb{W} \mathbb{X} \mathbb{Y} \mathbb{Z}\,\!</math>
 
|-
 
|-
 
! colspan="2" | boldface (vectors)
 
! colspan="2" | boldface (vectors)
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002BA-QINU
+
|<code><nowiki>\mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G}</nowiki></code>
 
|<math>\mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G} \,\!</math>
 
|<math>\mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G} \,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002BB-QINU
+
|<code><nowiki>\mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M}</nowiki></code>
 
|<math>\mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M} \,\!</math>
 
|<math>\mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M} \,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002BC-QINU
+
|<code><nowiki>\mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T}</nowiki></code>
 
|<math>\mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T} \,\!</math>
 
|<math>\mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T} \,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002BD-QINU
+
|<code><nowiki>\mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z}</nowiki></code>
 
|<math>\mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z} \,\!</math>
 
|<math>\mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z} \,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002BE-QINU
+
|<code><nowiki>\mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g}</nowiki></code>
 
|<math>\mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g} \,\!</math>
 
|<math>\mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g} \,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002BF-QINU
+
|<code><nowiki>\mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m}</nowiki></code>
 
|<math>\mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m} \,\!</math>
 
|<math>\mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m} \,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002C0-QINU
+
|<code><nowiki>\mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t}</nowiki></code>
 
|<math>\mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t} \,\!</math>
 
|<math>\mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t} \,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002C1-QINU
+
|<code><nowiki>\mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z}</nowiki></code>
 
|<math>\mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z} \,\!</math>
 
|<math>\mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z} \,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002C2-QINU
+
|<code><nowiki>\mathbf{0} \mathbf{1} \mathbf{2} \mathbf{3} \mathbf{4}</nowiki></code>
 
|<math>\mathbf{0} \mathbf{1} \mathbf{2} \mathbf{3} \mathbf{4} \,\!</math>
 
|<math>\mathbf{0} \mathbf{1} \mathbf{2} \mathbf{3} \mathbf{4} \,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002C3-QINU
+
|<code><nowiki>\mathbf{5} \mathbf{6} \mathbf{7} \mathbf{8} \mathbf{9}</nowiki></code>
 
|<math>\mathbf{5} \mathbf{6} \mathbf{7} \mathbf{8} \mathbf{9}\,\!</math>
 
|<math>\mathbf{5} \mathbf{6} \mathbf{7} \mathbf{8} \mathbf{9}\,\!</math>
 
|-
 
|-
 
! colspan="2" | Boldface (greek)
 
! colspan="2" | Boldface (greek)
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002C4-QINU
+
|<code><nowiki>\boldsymbol{\Alpha} \boldsymbol{\Beta} \boldsymbol{\Gamma} \boldsymbol{\Delta} \boldsymbol{\Epsilon} \boldsymbol{\Zeta}</nowiki></code>
 
|<math>\boldsymbol{\Alpha} \boldsymbol{\Beta} \boldsymbol{\Gamma} \boldsymbol{\Delta} \boldsymbol{\Epsilon} \boldsymbol{\Zeta} \,\!</math>
 
|<math>\boldsymbol{\Alpha} \boldsymbol{\Beta} \boldsymbol{\Gamma} \boldsymbol{\Delta} \boldsymbol{\Epsilon} \boldsymbol{\Zeta} \,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002C5-QINU
+
|<code><nowiki>\boldsymbol{\Eta} \boldsymbol{\Theta} \boldsymbol{\Iota} \boldsymbol{\Kappa} \boldsymbol{\Lambda} \boldsymbol{\Mu}</nowiki></code>
 
|<math>\boldsymbol{\Eta} \boldsymbol{\Theta} \boldsymbol{\Iota} \boldsymbol{\Kappa} \boldsymbol{\Lambda} \boldsymbol{\Mu}\,\!</math>
 
|<math>\boldsymbol{\Eta} \boldsymbol{\Theta} \boldsymbol{\Iota} \boldsymbol{\Kappa} \boldsymbol{\Lambda} \boldsymbol{\Mu}\,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002C6-QINU
+
|<code><nowiki>\boldsymbol{\Nu} \boldsymbol{\Xi} \boldsymbol{\Pi} \boldsymbol{\Rho} \boldsymbol{\Sigma} \boldsymbol{\Tau}</nowiki></code>
 
|<math>\boldsymbol{\Nu} \boldsymbol{\Xi} \boldsymbol{\Pi} \boldsymbol{\Rho} \boldsymbol{\Sigma} \boldsymbol{\Tau}\,\!</math>
 
|<math>\boldsymbol{\Nu} \boldsymbol{\Xi} \boldsymbol{\Pi} \boldsymbol{\Rho} \boldsymbol{\Sigma} \boldsymbol{\Tau}\,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002C7-QINU
+
|<code><nowiki>\boldsymbol{\Upsilon} \boldsymbol{\Phi} \boldsymbol{\Chi} \boldsymbol{\Psi} \boldsymbol{\Omega}</nowiki></code>
 
|<math>\boldsymbol{\Upsilon} \boldsymbol{\Phi} \boldsymbol{\Chi} \boldsymbol{\Psi} \boldsymbol{\Omega}\,\!</math>
 
|<math>\boldsymbol{\Upsilon} \boldsymbol{\Phi} \boldsymbol{\Chi} \boldsymbol{\Psi} \boldsymbol{\Omega}\,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002C8-QINU
+
|<code><nowiki>\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\epsilon} \boldsymbol{\zeta}</nowiki></code>
 
|<math>\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\epsilon} \boldsymbol{\zeta}\,\!</math>
 
|<math>\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\epsilon} \boldsymbol{\zeta}\,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002C9-QINU
+
|<code><nowiki>\boldsymbol{\eta} \boldsymbol{\theta} \boldsymbol{\iota} \boldsymbol{\kappa} \boldsymbol{\lambda} \boldsymbol{\mu}</nowiki></code>
 
|<math>\boldsymbol{\eta} \boldsymbol{\theta} \boldsymbol{\iota} \boldsymbol{\kappa} \boldsymbol{\lambda} \boldsymbol{\mu}\,\!</math>
 
|<math>\boldsymbol{\eta} \boldsymbol{\theta} \boldsymbol{\iota} \boldsymbol{\kappa} \boldsymbol{\lambda} \boldsymbol{\mu}\,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002CA-QINU
+
|<code><nowiki>\boldsymbol{\nu} \boldsymbol{\xi} \boldsymbol{\pi} \boldsymbol{\rho} \boldsymbol{\sigma} \boldsymbol{\tau}</nowiki></code>
 
|<math>\boldsymbol{\nu} \boldsymbol{\xi} \boldsymbol{\pi} \boldsymbol{\rho} \boldsymbol{\sigma} \boldsymbol{\tau}\,\!</math>
 
|<math>\boldsymbol{\nu} \boldsymbol{\xi} \boldsymbol{\pi} \boldsymbol{\rho} \boldsymbol{\sigma} \boldsymbol{\tau}\,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002CB-QINU
+
|<code><nowiki>\boldsymbol{\upsilon} \boldsymbol{\phi} \boldsymbol{\chi} \boldsymbol{\psi} \boldsymbol{\omega}</nowiki></code>
 
|<math>\boldsymbol{\upsilon} \boldsymbol{\phi} \boldsymbol{\chi} \boldsymbol{\psi} \boldsymbol{\omega}\,\!</math>
 
|<math>\boldsymbol{\upsilon} \boldsymbol{\phi} \boldsymbol{\chi} \boldsymbol{\psi} \boldsymbol{\omega}\,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002CC-QINU
+
|<code><nowiki>\boldsymbol{\varepsilon} \boldsymbol{\digamma} \boldsymbol{\vartheta} \boldsymbol{\varkappa}</nowiki></code>
 
|<math>\boldsymbol{\varepsilon} \boldsymbol{\digamma} \boldsymbol{\vartheta} \boldsymbol{\varkappa} \,\!</math>
 
|<math>\boldsymbol{\varepsilon} \boldsymbol{\digamma} \boldsymbol{\vartheta} \boldsymbol{\varkappa} \,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002CD-QINU
+
|<code><nowiki>\boldsymbol{\varpi} \boldsymbol{\varrho} \boldsymbol{\varsigma} \boldsymbol{\varphi}</nowiki></code>
 
|<math>\boldsymbol{\varpi} \boldsymbol{\varrho} \boldsymbol{\varsigma} \boldsymbol{\varphi}\,\!</math>
 
|<math>\boldsymbol{\varpi} \boldsymbol{\varrho} \boldsymbol{\varsigma} \boldsymbol{\varphi}\,\!</math>
 
|-
 
|-
 
! colspan="2" | Italics
 
! colspan="2" | Italics
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002CE-QINU
+
|<code><nowiki>\mathit{A} \mathit{B} \mathit{C} \mathit{D} \mathit{E} \mathit{F} \mathit{G}</nowiki></code>
 
|<math>\mathit{A} \mathit{B} \mathit{C} \mathit{D} \mathit{E} \mathit{F} \mathit{G} \,\!</math>
 
|<math>\mathit{A} \mathit{B} \mathit{C} \mathit{D} \mathit{E} \mathit{F} \mathit{G} \,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002CF-QINU
+
|<code><nowiki>\mathit{H} \mathit{I} \mathit{J} \mathit{K} \mathit{L} \mathit{M}</nowiki></code>
 
|<math>\mathit{H} \mathit{I} \mathit{J} \mathit{K} \mathit{L} \mathit{M} \,\!</math>
 
|<math>\mathit{H} \mathit{I} \mathit{J} \mathit{K} \mathit{L} \mathit{M} \,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002D0-QINU
+
|<code><nowiki>\mathit{N} \mathit{O} \mathit{P} \mathit{Q} \mathit{R} \mathit{S} \mathit{T}</nowiki></code>
 
|<math>\mathit{N} \mathit{O} \mathit{P} \mathit{Q} \mathit{R} \mathit{S} \mathit{T} \,\!</math>
 
|<math>\mathit{N} \mathit{O} \mathit{P} \mathit{Q} \mathit{R} \mathit{S} \mathit{T} \,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002D1-QINU
+
|<code><nowiki>\mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z}</nowiki></code>
 
|<math>\mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z} \,\!</math>
 
|<math>\mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z} \,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002D2-QINU
+
|<code><nowiki>\mathit{a} \mathit{b} \mathit{c} \mathit{d} \mathit{e} \mathit{f} \mathit{g}</nowiki></code>
 
|<math>\mathit{a} \mathit{b} \mathit{c} \mathit{d} \mathit{e} \mathit{f} \mathit{g} \,\!</math>
 
|<math>\mathit{a} \mathit{b} \mathit{c} \mathit{d} \mathit{e} \mathit{f} \mathit{g} \,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002D3-QINU
+
|<code><nowiki>\mathit{h} \mathit{i} \mathit{j} \mathit{k} \mathit{l} \mathit{m}</nowiki></code>
 
|<math>\mathit{h} \mathit{i} \mathit{j} \mathit{k} \mathit{l} \mathit{m} \,\!</math>
 
|<math>\mathit{h} \mathit{i} \mathit{j} \mathit{k} \mathit{l} \mathit{m} \,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002D4-QINU
+
|<code><nowiki>\mathit{n} \mathit{o} \mathit{p} \mathit{q} \mathit{r} \mathit{s} \mathit{t}</nowiki></code>
 
|<math>\mathit{n} \mathit{o} \mathit{p} \mathit{q} \mathit{r} \mathit{s} \mathit{t} \,\!</math>
 
|<math>\mathit{n} \mathit{o} \mathit{p} \mathit{q} \mathit{r} \mathit{s} \mathit{t} \,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002D5-QINU
+
|<code><nowiki>\mathit{u} \mathit{v} \mathit{w} \mathit{x} \mathit{y} \mathit{z}</nowiki></code>
 
|<math>\mathit{u} \mathit{v} \mathit{w} \mathit{x} \mathit{y} \mathit{z} \,\!</math>
 
|<math>\mathit{u} \mathit{v} \mathit{w} \mathit{x} \mathit{y} \mathit{z} \,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002D6-QINU
+
|<code><nowiki>\mathit{0} \mathit{1} \mathit{2} \mathit{3} \mathit{4}</nowiki></code>
 
|<math>\mathit{0} \mathit{1} \mathit{2} \mathit{3} \mathit{4} \,\!</math>
 
|<math>\mathit{0} \mathit{1} \mathit{2} \mathit{3} \mathit{4} \,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002D7-QINU
+
|<code><nowiki>\mathit{5} \mathit{6} \mathit{7} \mathit{8} \mathit{9}</nowiki></code>
 
|<math>\mathit{5} \mathit{6} \mathit{7} \mathit{8} \mathit{9}\,\!</math>
 
|<math>\mathit{5} \mathit{6} \mathit{7} \mathit{8} \mathit{9}\,\!</math>
 
|-
 
|-
 
! colspan="2" | Roman typeface
 
! colspan="2" | Roman typeface
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002D8-QINU
+
|<code><nowiki>\mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G}</nowiki></code>
 
|<math>\mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G} \,\!</math>
 
|<math>\mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G} \,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002D9-QINU
+
|<code><nowiki>\mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M}</nowiki></code>
 
|<math>\mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M} \,\!</math>
 
|<math>\mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M} \,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002DA-QINU
+
|<code><nowiki>\mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T}</nowiki></code>
 
|<math>\mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T} \,\!</math>
 
|<math>\mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T} \,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002DB-QINU
+
|<code><nowiki>\mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z}</nowiki></code>
 
|<math>\mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z} \,\!</math>
 
|<math>\mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z} \,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002DC-QINU
+
|<code><nowiki>\mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g}</nowiki></code>
 
|<math>\mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g}\,\!</math>
 
|<math>\mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g}\,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002DD-QINU
+
|<code><nowiki>\mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m}</nowiki></code>
 
|<math>\mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m} \,\!</math>
 
|<math>\mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m} \,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002DE-QINU
+
|<code><nowiki>\mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t}</nowiki></code>
 
|<math>\mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t} \,\!</math>
 
|<math>\mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t} \,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002DF-QINU
+
|<code><nowiki>\mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z}</nowiki></code>
 
|<math>\mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z} \,\!</math>
 
|<math>\mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z} \,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002E0-QINU
+
|<code><nowiki>\mathrm{0} \mathrm{1} \mathrm{2} \mathrm{3} \mathrm{4}</nowiki></code>
 
|<math>\mathrm{0} \mathrm{1} \mathrm{2} \mathrm{3} \mathrm{4} \,\!</math>
 
|<math>\mathrm{0} \mathrm{1} \mathrm{2} \mathrm{3} \mathrm{4} \,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002E1-QINU
+
|<code><nowiki>\mathrm{5} \mathrm{6} \mathrm{7} \mathrm{8} \mathrm{9}</nowiki></code>
 
|<math>\mathrm{5} \mathrm{6} \mathrm{7} \mathrm{8} \mathrm{9}\,\!</math>
 
|<math>\mathrm{5} \mathrm{6} \mathrm{7} \mathrm{8} \mathrm{9}\,\!</math>
 
|-
 
|-
 
! colspan="2" | Fraktur typeface
 
! colspan="2" | Fraktur typeface
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002E2-QINU
+
|<code><nowiki>\mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G}</nowiki></code>
 
|<math>\mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G} \,\!</math>
 
|<math>\mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G} \,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002E3-QINU
+
|<code><nowiki>\mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M}</nowiki></code>
 
|<math>\mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M} \,\!</math>
 
|<math>\mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M} \,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002E4-QINU
+
|<code><nowiki>\mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T}</nowiki></code>
 
|<math>\mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T} \,\!</math>
 
|<math>\mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T} \,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002E5-QINU
+
|<code><nowiki>\mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z}</nowiki></code>
 
|<math>\mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z} \,\!</math>
 
|<math>\mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z} \,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002E6-QINU
+
|<code><nowiki>\mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g}</nowiki></code>
 
|<math>\mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g} \,\!</math>
 
|<math>\mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g} \,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002E7-QINU
+
|<code><nowiki>\mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m}</nowiki></code>
 
|<math>\mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m} \,\!</math>
 
|<math>\mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m} \,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002E8-QINU
+
|<code><nowiki>\mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t}</nowiki></code>
 
|<math>\mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t} \,\!</math>
 
|<math>\mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t} \,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002E9-QINU
+
|<code><nowiki>\mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z}</nowiki></code>
 
|<math>\mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z} \,\!</math>
 
|<math>\mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z} \,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002EA-QINU
+
|<code><nowiki>\mathfrak{0} \mathfrak{1} \mathfrak{2} \mathfrak{3} \mathfrak{4}</nowiki></code>
 
|<math>\mathfrak{0} \mathfrak{1} \mathfrak{2} \mathfrak{3} \mathfrak{4} \,\!</math>
 
|<math>\mathfrak{0} \mathfrak{1} \mathfrak{2} \mathfrak{3} \mathfrak{4} \,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002EB-QINU
+
|<code><nowiki>\mathfrak{5} \mathfrak{6} \mathfrak{7} \mathfrak{8} \mathfrak{9}</nowiki></code>
 
|<math>\mathfrak{5} \mathfrak{6} \mathfrak{7} \mathfrak{8} \mathfrak{9}\,\!</math>
 
|<math>\mathfrak{5} \mathfrak{6} \mathfrak{7} \mathfrak{8} \mathfrak{9}\,\!</math>
 
|-
 
|-
 
! colspan="2" | Calligraphy/Script
 
! colspan="2" | Calligraphy/Script
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002EC-QINU
+
|<code><nowiki>\mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G}</nowiki></code>
 
|<math>\mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G} \,\!</math>
 
|<math>\mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G} \,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002ED-QINU
+
|<code><nowiki>\mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M}</nowiki></code>
 
|<math>\mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M} \,\!</math>
 
|<math>\mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M} \,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002EE-QINU
+
|<code><nowiki>\mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T}</nowiki></code>
 
|<math>\mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T} \,\!</math>
 
|<math>\mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T} \,\!</math>
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002EF-QINU
+
|<code><nowiki>\mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z}</nowiki></code>
 
|<math>\mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z}\,\!</math>
 
|<math>\mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z}\,\!</math>
 
|-
 
|-
 
! colspan="2" | Hebrew
 
! colspan="2" | Hebrew
 
|-
 
|-
|UNIQ0bd346bf6e656e70-code-000002F0-QINU
+
|<code><nowiki>\aleph \beth \gimel \daleth</nowiki></code>
 
|<math>\aleph \beth \gimel \daleth\,\!</math>
 
|<math>\aleph \beth \gimel \daleth\,\!</math>
 
|}
 
|}
1.017. satır: 1.079. satır:
 
Due to the default css
 
Due to the default css
  
UNIQ0bd346bf6e656e70-pre-000002F1-QINU
+
<pre>img.tex { vertical-align: middle; }</pre>
  
 
an inline expression like <math>\int_{-N}^{N} e^x\, dx = 2 \sinh N</math> should look good.
 
an inline expression like <math>\int_{-N}^{N} e^x\, dx = 2 \sinh N</math> should look good.
  
If you need to align it otherwise, use UNIQ0bd346bf6e656e70-code-000002F2-QINU and play with the UNIQ0bd346bf6e656e70-code-000002F3-QINU argument until you get it right; however, how it looks may depend on the browser and the browser settings.
+
If you need to align it otherwise, use <code><nowiki><font style="vertical-align:-100%;"><math>...</math></font></nowiki></code> and play with the <code>vertical-align</code> argument until you get it right; however, how it looks may depend on the browser and the browser settings.
  
 
Also note that if you rely on this workaround, if/when the rendering on the server gets fixed in future releases, as a result of this extra manual offset your formulae will suddenly be aligned incorrectly. So use it sparingly, if at all.
 
Also note that if you rely on this workaround, if/when the rendering on the server gets fixed in future releases, as a result of this extra manual offset your formulae will suddenly be aligned incorrectly. So use it sparingly, if at all.
1.027. satır: 1.089. satır:
 
== Forced PNG rendering ==
 
== Forced PNG rendering ==
  
To force the formula to render as PNG, add UNIQ0bd346bf6e656e70-code-000002F4-QINU (small space) at the end of the formula (where it is not rendered).  This will force PNG if the user is in "HTML if simple" mode, but not for "HTML if possible" mode (math rendering settings in [[Help:Preferences|preferences]]).
+
To force the formula to render as PNG, add <code>\,</code> (small space) at the end of the formula (where it is not rendered).  This will force PNG if the user is in "HTML if simple" mode, but not for "HTML if possible" mode (math rendering settings in [[Help:Preferences|preferences]]).
  
You can also use UNIQ0bd346bf6e656e70-code-000002F5-QINU (small space and negative space, which cancel out) anywhere inside the math tags.  This ''does'' force PNG even in "HTML if possible" mode, unlike UNIQ0bd346bf6e656e70-code-000002F6-QINU.
+
You can also use <code>\,\!</code> (small space and negative space, which cancel out) anywhere inside the math tags.  This ''does'' force PNG even in "HTML if possible" mode, unlike <code>\,</code>.
  
 
This could be useful to keep the rendering of formulae in a proof consistent, for example, or to fix formulae that render incorrectly in HTML (at one time, a^{2+2} rendered with an extra underscore), or to demonstrate how something is rendered when it would normally show up as HTML (as in the examples above).
 
This could be useful to keep the rendering of formulae in a proof consistent, for example, or to fix formulae that render incorrectly in HTML (at one time, a^{2+2} rendered with an extra underscore), or to demonstrate how something is rendered when it would normally show up as HTML (as in the examples above).
1.089. satır: 1.151. satır:
 
You might want to include a comment in the HTML so people don't "correct" the formula by removing it:
 
You might want to include a comment in the HTML so people don't "correct" the formula by removing it:
  
:''UNIQ0bd346bf6e656e70-nowiki-000002F7-QINU''
+
:''<nowiki><!-- The \,\! is to keep the formula rendered as PNG instead of HTML.  Please don't remove it.--></nowiki>''
  
 
== Color ==
 
== Color ==
1.095. satır: 1.157. satır:
 
Equations can use color:
 
Equations can use color:
  
*UNIQ0bd346bf6e656e70-code-000002F8-QINU
+
*<code>{\color{Blue}x^2}+{\color{Brown}2x}-{\color{OliveGreen}1}</code>
 
*:<math>{\color{Blue}x^2}+{\color{Brown}2x}-{\color{OliveGreen}1}</math>
 
*:<math>{\color{Blue}x^2}+{\color{Brown}2x}-{\color{OliveGreen}1}</math>
  
*UNIQ0bd346bf6e656e70-code-000002F9-QINU
+
*<code>x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a}</code>
 
*:<math>x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a}</math>
 
*:<math>x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a}</math>
  
1.111. satır: 1.173. satır:
 
  <math>ax^2 + bx + c = 0</math>
 
  <math>ax^2 + bx + c = 0</math>
  
  UNIQ0bd346bf6e656e70-nowiki-000002FA-QINU
+
  <nowiki><math>ax^2 + bx + c = 0</math></nowiki>
  
 
===Quadratic Polynomial (Force PNG Rendering)===
 
===Quadratic Polynomial (Force PNG Rendering)===
 
  <math>ax^2 + bx + c = 0\,\!</math>
 
  <math>ax^2 + bx + c = 0\,\!</math>
 
   
 
   
  UNIQ0bd346bf6e656e70-nowiki-000002FB-QINU
+
  <nowiki><math>ax^2 + bx + c = 0\,\!</math></nowiki>
  
 
===Quadratic Formula===
 
===Quadratic Formula===
 
  <math>x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}</math>
 
  <math>x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}</math>
 
   
 
   
  UNIQ0bd346bf6e656e70-nowiki-000002FC-QINU
+
  <nowiki><math>x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}</math></nowiki>
  
 
===Tall Parentheses and Fractions ===
 
===Tall Parentheses and Fractions ===
 
  <math>2 = \left( \frac{\left(3-x\right) \times 2}{3-x} \right)</math>
 
  <math>2 = \left( \frac{\left(3-x\right) \times 2}{3-x} \right)</math>
 
   
 
   
  UNIQ0bd346bf6e656e70-nowiki-000002FD-QINU
+
  <nowiki><math>2 = \left(
 +
\frac{\left(3-x\right) \times 2}{3-x}
 +
\right)</math></nowiki>
  
 
  <math>S_{new} = S_{old} + \frac{ \left( 5-T \right) ^2} {2}</math>
 
  <math>S_{new} = S_{old} + \frac{ \left( 5-T \right) ^2} {2}</math>
 
   
 
   
  UNIQ0bd346bf6e656e70-nowiki-000002FE-QINU
+
  <nowiki><math>S_{new} = S_{old} +
 +
\frac{ \left( 5-T \right) ^2} {2}</math></nowiki>
  
 
===Integrals===
 
===Integrals===
 
  <math>\int_a^x \int_a^s f(y)\,dy\,ds = \int_a^x f(y)(x-y)\,dy</math>
 
  <math>\int_a^x \int_a^s f(y)\,dy\,ds = \int_a^x f(y)(x-y)\,dy</math>
 
   
 
   
  UNIQ0bd346bf6e656e70-nowiki-000002FF-QINU
+
  <nowiki><math>\int_a^x \int_a^s f(y)\,dy\,ds
 +
= \int_a^x f(y)(x-y)\,dy</math></nowiki>
  
 
===Summation===
 
===Summation===
 
  <math>\sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n}{3^m\left(m\,3^n+n\,3^m\right)}</math>
 
  <math>\sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n}{3^m\left(m\,3^n+n\,3^m\right)}</math>
  
  UNIQ0bd346bf6e656e70-nowiki-00000300-QINU
+
  <nowiki><math>\sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n}
 +
{3^m\left(m\,3^n+n\,3^m\right)}</math></nowiki>
  
 
=== Differential Equation ===
 
=== Differential Equation ===
 
  <math>u'' + p(x)u' + q(x)u=f(x),\quad x>a</math>
 
  <math>u'' + p(x)u' + q(x)u=f(x),\quad x>a</math>
 
   
 
   
  UNIQ0bd346bf6e656e70-nowiki-00000301-QINU
+
  <nowiki><math>u'' + p(x)u' + q(x)u=f(x),\quad x>a</math></nowiki>
  
 
===Complex numbers===
 
===Complex numbers===
 
  <math>|\bar{z}| = |z|, |(\bar{z})^n| = |z|^n, \arg(z^n) = n \arg(z)</math>
 
  <math>|\bar{z}| = |z|, |(\bar{z})^n| = |z|^n, \arg(z^n) = n \arg(z)</math>
 
   
 
   
  UNIQ0bd346bf6e656e70-nowiki-00000302-QINU
+
  <nowiki><math>|\bar{z}| = |z|,
 +
|(\bar{z})^n| = |z|^n,
 +
\arg(z^n) = n \arg(z)</math></nowiki>
  
 
===Limits===
 
===Limits===
 
  <math>\lim_{z\rightarrow z_0} f(z)=f(z_0)</math>
 
  <math>\lim_{z\rightarrow z_0} f(z)=f(z_0)</math>
 
   
 
   
  UNIQ0bd346bf6e656e70-nowiki-00000303-QINU
+
  <nowiki><math>\lim_{z\rightarrow z_0} f(z)=f(z_0)</math></nowiki>
  
 
===Integral Equation===
 
===Integral Equation===
1.161. satır: 1.230. satır:
 
  = \frac{1}{4\pi^2\kappa^2} \int_0^\infty \frac{\sin(\kappa R)}{\kappa R}  \frac{\partial}{\partial R}  \left[R^2\frac{\partial D_n(R)}{\partial R}\right]\,dR</math>
 
  = \frac{1}{4\pi^2\kappa^2} \int_0^\infty \frac{\sin(\kappa R)}{\kappa R}  \frac{\partial}{\partial R}  \left[R^2\frac{\partial D_n(R)}{\partial R}\right]\,dR</math>
 
   
 
   
  UNIQ0bd346bf6e656e70-nowiki-00000304-QINU
+
  <nowiki><math>\phi_n(\kappa) =
 +
\frac{1}{4\pi^2\kappa^2} \int_0^\infty
 +
\frac{\sin(\kappa R)}{\kappa R}
 +
\frac{\partial}{\partial R}
 +
\left[R^2\frac{\partial D_n(R)}{\partial R}\right]\,dR</math></nowiki>
  
 
===Example===
 
===Example===
 
  <math>\phi_n(\kappa) = 0.033C_n^2\kappa^{-11/3},\quad \frac{1}{L_0}\ll\kappa\ll\frac{1}{l_0}</math>
 
  <math>\phi_n(\kappa) = 0.033C_n^2\kappa^{-11/3},\quad \frac{1}{L_0}\ll\kappa\ll\frac{1}{l_0}</math>
 
   
 
   
  UNIQ0bd346bf6e656e70-nowiki-00000305-QINU
+
  <nowiki><math>\phi_n(\kappa) =
 +
0.033C_n^2\kappa^{-11/3},\quad
 +
\frac{1}{L_0}\ll\kappa\ll\frac{1}{l_0}</math></nowiki>
  
 
===Continuation and cases===
 
===Continuation and cases===
1.172. satır: 1.247. satır:
 
  \frac{1}{2} & x = 0 \\ 1 - x^2 & 0 < x \le 1\end{cases}</math>
 
  \frac{1}{2} & x = 0 \\ 1 - x^2 & 0 < x \le 1\end{cases}</math>
 
   
 
   
  UNIQ0bd346bf6e656e70-nowiki-00000306-QINU
+
  <nowiki><math>
 +
f(x) =
 +
\begin{cases}
 +
1 & -1 \le x < 0 \\
 +
\frac{1}{2} & x = 0 \\
 +
1 - x^2 & 0 < x\le 1
 +
\end{cases}
 +
</math></nowiki>
  
 
===Prefixed subscript===
 
===Prefixed subscript===
 
  <math>{}_pF_q(a_1,\dots,a_p;c_1,\dots,c_q;z) = \sum_{n=0}^\infty \frac{(a_1)_n\cdot\cdot\cdot(a_p)_n}{(c_1)_n\cdot\cdot\cdot(c_q)_n}\frac{z^n}{n!}</math>
 
  <math>{}_pF_q(a_1,\dots,a_p;c_1,\dots,c_q;z) = \sum_{n=0}^\infty \frac{(a_1)_n\cdot\cdot\cdot(a_p)_n}{(c_1)_n\cdot\cdot\cdot(c_q)_n}\frac{z^n}{n!}</math>
 
   
 
   
  UNIQ0bd346bf6e656e70-nowiki-00000307-QINU
+
  <nowiki> <math>{}_pF_q(a_1,\dots,a_p;c_1,\dots,c_q;z)
 +
= \sum_{n=0}^\infty
 +
\frac{(a_1)_n\cdot\cdot\cdot(a_p)_n}{(c_1)_n\cdot\cdot\cdot(c_q)_n}
 +
\frac{z^n}{n!}</math></nowiki>
  
 
</center>
 
</center>
1.202. satır: 1.287. satır:
  
 
[[Kategori:Turkmathviki Yardım]]
 
[[Kategori:Turkmathviki Yardım]]
 
[[Wikipedia:TeX]]
 

14:16, 19 Şubat 2014 tarihindeki hâli

MediaWiki yazılımı matematiksel ifadelerin biçimlendirilmesinde LaTeX ve AMSLaTeX yazılımlarını içeren TeX yazılımını kullanmaktadır. Bazı matematiksel formüller kişisel tercihlere bağlı olarak PNG, bazıları ise HTML olarak gözükebilir.


Kodlama

Matematiksel kodlar <math> ... </math> kodları arasına yazılır. Math markup goes inside <math> ... </math>. The edit toolbar has a button for this.


Tex kodları doğru yazılmadıkları zaman hata uyarısı verirler. Bu nedenle kodları doğru yazdığınızdan emin olmalısınız.


Sunum

It should be pointed out that most of these shortcomings have been addressed by Maynard Handley, but have not been released yet.

The alt attribute of the PNG images (the text that is displayed if your browser can't display images; Internet Explorer shows it up in the hover box) is the wikitext that produced them, excluding the <math> and </math>.

Apart from function and operator names, as is customary in mathematics for variables, letters are in italics; digits are not. For other text, (like variable labels) to avoid being rendered in italics like variables, use \mbox or \mathrm. For example, <math>\mbox{abc}</math> gives $ \mbox{abc} $.

TeX ve HTML

Before introducing TeX markup for producing special characters, it should be noted that, as this comparison table shows, sometimes similar results can be achieved in HTML (see Help:Special characters).

TeX kodlaması TeX çıktısı HTML kodlaması HTML çıktısı
<math>\alpha\,</math> $ \alpha\, $ &alpha; α
<math>\sqrt{2}</math> $ \sqrt{2} $ &radic;2 √2
<math>\sqrt{1-e^2}</math> $ \sqrt{1-e^2} $ &radic;<span style="text-decoration: overline;">1&minus;''e''&sup2;</div> 1−e²</div>


as follows.

HTML'nin avantajları

  1. HTML ile yazılan formüller her zaman yazının bütünü gibi durur.
  2. HTML ile yazılan formüllerde, sayfanın arka planı, font türü, internet sunucusunun ayarları aktif olarak çalışır.
  3. HTML kullanarak yazılan formüller sayfa açılım hızını arttırır.


TeX kullanımının avantajları

  1. Tex kalite bakımından HTML'den ileri bir yazılımdır.
  2. Tex yazılımında "<math>x</math>" kodlaması matematiksel değişken anlamına gelir. Fakat HTML'de "x" kodlaması herhangi bir anlama gelebilir. Bu yüzden bilgiler daha kolay kaybolabilir.
  3. TeX yazılımı özellikle formül yazımı için tasarlanmıştır. Bu nedenle daha kolay ve daha işlevseldir.
  4. One consequence of point 1 is that TeX can be transformed into HTML, but not vice-versa. This means that on the server side we can always transform a formula, based on its complexity and location within the text, user preferences, type of browser, etc. Therefore, where possible, all the benefits of HTML can be retained, together with the benefits of TeX. It's true that the current situation is not ideal, but that's not a good reason to drop information/contents. It's more a reason to help improve the situation.
  5. Diğer önemli husus TeX MathML kodlamasına, bu kodlamayı destekleyen sunucular tarafından çevirlebilmektedir.
  6. TeX komutlarını kullanırken sunucu desteğine ya da diğer teknik desteklere ihtiyaç duymazsınız. Bu kodlamanın işlevselliğini serverler sağlamaktadır. Bu nedenle her türlü sunucuda, rahatlıkla yazıp kullanabileceğiniz bir kodlama türüdür.

Fonksiyonlar, semboller, özel karakterler

Aksanlar/Vurgular

\acute{a} \grave{a} \hat{a} \tilde{a} \breve{a} $ \acute{a} \grave{a} \hat{a} \tilde{a} \breve{a}\,\! $
\check{a} \bar{a} \ddot{a} \dot{a} $ \check{a} \bar{a} \ddot{a} \dot{a}\,\! $

Standart fonksiyonlar

\sin a \cos b \tan c $ \sin a \cos b \tan c\,\! $
\sec d \csc e \cot f $ \sec d \csc e \cot f\,\! $
\arcsin h \arccos i \arctan j $ \arcsin h \arccos i \arctan j\,\! $
\sinh k \cosh l \tanh m \coth n $ \sinh k \cosh l \tanh m \coth n\,\! $
\operatorname{sh}o \operatorname{ch}p \operatorname{th}q $ \operatorname{sh}o \operatorname{ch}p \operatorname{th}q\,\! $
\operatorname{argsh}r \operatorname{argch}s \operatorname{argth}t $ \operatorname{argsh}r \operatorname{argch}s \operatorname{argth}t\,\! $
\lim u \limsup v \liminf w \min x \max y $ \lim u \limsup v \liminf w \min x \max y\,\! $
\inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g $ \inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g\,\! $
\deg h \gcd i \Pr j \det k \hom l \arg m \dim n $ \deg h \gcd i \Pr j \det k \hom l \arg m \dim n\,\! $

Modüler aritmatik

s_k \equiv 0 \pmod{m} a \bmod b $ s_k \equiv 0 \pmod{m} a \bmod b\,\! $

Türevsel karakterler

\nabla \partial x dx \dot x \ddot y $ \nabla \partial x dx \dot x \ddot y\,\! $

Kümeler

\forall \exists \empty \emptyset \varnothing $ \forall \exists \empty \emptyset \varnothing\,\! $
\in \ni \not \in \notin \subset \subseteq \supset \supseteq $ \in \ni \not \in \notin \subset \subseteq \supset \supseteq\,\! $
\cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus $ \cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus\,\! $
\sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup $ \sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup\,\! $

Operatör işaretler

+ \oplus \bigoplus \pm \mp - $ + \oplus \bigoplus \pm \mp - \,\! $
\times \otimes \bigotimes \cdot \circ \bullet \bigodot $ \times \otimes \bigotimes \cdot \circ \bullet \bigodot\,\! $
\star * / \div \frac{1}{2} $ \star * / \div \frac{1}{2}\,\! $

Mantıksal ifadeler

\land \wedge \bigwedge \bar{q} \to p $ \land \wedge \bigwedge \bar{q} \to p\,\! $
\lor \vee \bigvee \lnot \neg q \And $ \lor \vee \bigvee \lnot \neg q \And\,\! $

Kök alma

\sqrt{2} \sqrt[n]{x} $ \sqrt{2} \sqrt[n]{x}\,\! $

Eşitlik/Denklik/Benzerlik işaretleri

\sim \approx \simeq \cong \dot= \overset{\underset{\mathrm{def}}{}}{=} $ \sim \approx \simeq \cong \dot= \overset{\underset{\mathrm{def}}{}}{=}\,\! $
\le < \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto $ \le < \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto\,\! $

Geometrik

\Diamond \Box \triangle \angle \perp \mid \nmid \| 45^\circ $ \Diamond \, \Box \, \triangle \, \angle \perp \, \mid \; \nmid \, \| 45^\circ\,\! $

Oklar/Bildiri ifadeleri

\leftarrow \gets \rightarrow \to \not\to \leftrightarrow \longleftarrow \longrightarrow $ \leftarrow \gets \rightarrow \to \not\to \leftrightarrow \longleftarrow \longrightarrow\,\! $
\mapsto \longmapsto \hookrightarrow \hookleftarrow \nearrow \searrow \swarrow \nwarrow $ \mapsto \longmapsto \hookrightarrow \hookleftarrow \nearrow \searrow \swarrow \nwarrow\,\! $
\uparrow \downarrow \updownarrow \rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft $ \uparrow \downarrow \updownarrow \rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft\,\! $
\upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \Leftarrow \Rightarrow \Leftrightarrow \Longleftarrow $ \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \Leftarrow \Rightarrow \Leftrightarrow \Longleftarrow\,\! $
\Longrightarrow \Longleftrightarrow (or \iff) \Uparrow \Downarrow \Updownarrow \leftleftarrows \leftrightarrows \Lleftarrow \leftarrowtail \looparrowleft $ \Longrightarrow \Longleftrightarrow \Uparrow \Downarrow \Updownarrow \leftleftarrows \leftrightarrows \Lleftarrow \leftarrowtail \looparrowleft \,\! $
\leftrightharpoons \curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \Rrightarrow \rightarrowtail \looparrowright $ \leftrightharpoons \curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \Rrightarrow \rightarrowtail \looparrowright\,\! $
\curvearrowright \circlearrowright \Rsh \downdownarrows \multimap \leftrightsquigarrow \rightsquigarrow \nLeftarrow \nleftrightarrow \nRightarrow $ \curvearrowright \circlearrowright \Rsh \downdownarrows \multimap \leftrightsquigarrow \rightsquigarrow \nLeftarrow \nleftrightarrow \nRightarrow\,\! $
\nLeftrightarrow \longleftrightarrow $ \nLeftrightarrow \longleftrightarrow\,\! $

Özel

\eth \S \P \% \dagger \ddagger \ldots \cdots $ \eth \S \P \% \dagger \ddagger \ldots \cdots\,\! $
\smile \frown \wr \triangleleft \triangleright \infty \bot \top $ \smile \frown \wr \triangleleft \triangleright \infty \bot \top\,\! $
\vdash \vDash \Vdash \models \lVert \rVert \imath \hbar $ \vdash \vDash \Vdash \models \lVert \rVert \imath \hbar\,\! $
\ell \mho \Finv \Re \Im \wp \complement \diamondsuit $ \ell \mho \Finv \Re \Im \wp \complement \diamondsuit\,\! $
\heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp $ \heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp\,\! $

Unsorted (new stuff)

\vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown $ \vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown $
\blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge $ \blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge $
\veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes $ \veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes $
\rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant $ \rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant $
\eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot \risingdotseq $ \eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot \risingdotseq $
\fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox \vartriangleleft $ \fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox \vartriangleleft $
\Vvdash \bumpeq \Bumpeq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox \eqsim \gtrdot $ \Vvdash \bumpeq \Bumpeq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox \eqsim \gtrdot $
\ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq $ \ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq $
\Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \shortparallel \between \pitchfork $ \Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \shortparallel \between \pitchfork $
\varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq $ \varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq $
\lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid $ \lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid $
\nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \varsubsetneq \subsetneqq \varsubsetneqq \ngtr $ \nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \varsubsetneq \subsetneqq \varsubsetneqq \ngtr $
\ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq $ \ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq $
\succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq $ \succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq $
\nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq $ \nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq $
\jmath \surd \ast \uplus \diamond \bigtriangleup \bigtriangledown \ominus $ \jmath \surd \ast \uplus \diamond \bigtriangleup \bigtriangledown \ominus\,\! $
\oslash \odot \bigcirc \amalg \prec \succ \preceq \succeq $ \oslash \odot \bigcirc \amalg \prec \succ \preceq \succeq\,\! $
\dashv \asymp \doteq \parallel $ \dashv \asymp \doteq \parallel\,\! $

Üslü ifadeler, toplam-çarpım sembolleri, türev, integral

Feature Syntax How it looks rendered
HTML PNG
Superscript a^2 $ a^2 $ $ a^2 \,\! $
Subscript a_2 $ a_2 $ $ a_2 \,\! $
Grouping a^{2+2} $ a^{2+2} $ $ a^{2+2}\,\! $
a_{i,j} $ a_{i,j} $ $ a_{i,j}\,\! $
Combining sub & super x_2^3 $ x_2^3 $
Preceding and/or Additional sub & super \sideset{_1^2}{_3^4}\prod_a^b $ \sideset{_1^2}{_3^4}\prod_a^b $
{}_1^2\!\Omega_3^4 $ {}_1^2\!\Omega_3^4 $
Stacking \overset{\alpha}{\omega} $ \overset{\alpha}{\omega} $
\underset{\alpha}{\omega} $ \underset{\alpha}{\omega} $
\overset{\alpha}{\underset{\gamma}{\omega}} $ \overset{\alpha}{\underset{\gamma}{\omega}} $
\stackrel{\alpha}{\omega} $ \stackrel{\alpha}{\omega} $
Derivative (forced PNG) x', y, f', f\!   $ x', y'', f', f''\! $
Derivative (f in italics may overlap primes in HTML) x', y, f', f $ x', y'', f', f'' $ $ x', y'', f', f''\! $
Derivative (HTML-yanlış) x^\prime, y^{\prime\prime} $ x^\prime, y^{\prime\prime} $ $ x^\prime, y^{\prime\prime}\,\! $
Derivative (PNG-yanlış) x\prime, y\prime\prime $ x\prime, y\prime\prime $ $ x\prime, y\prime\prime\,\! $
Derivative dots \dot{x}, \ddot{x} $ \dot{x}, \ddot{x} $
Underlines, overlines, vectors \hat a \ \bar b \ \vec c $ \hat a \ \bar b \ \vec c $
\overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f} $ \overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f} $
\overline{g h i} \ \underline{j k l} $ \overline{g h i} \ \underline{j k l} $
Arrows A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C $ A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C $
Overbraces \overbrace{ 1+2+\cdots+100 }^{5050} $ \overbrace{ 1+2+\cdots+100 }^{5050} $
Underbraces \underbrace{ a+b+\cdots+z }_{26} $ \underbrace{ a+b+\cdots+z }_{26} $
Sum \sum_{k=1}^N k^2 $ \sum_{k=1}^N k^2 $
Sum (force \textstyle) \textstyle \sum_{k=1}^N k^2 $ \textstyle \sum_{k=1}^N k^2 $
Product \prod_{i=1}^N x_i $ \prod_{i=1}^N x_i $
Product (force \textstyle) \textstyle \prod_{i=1}^N x_i $ \textstyle \prod_{i=1}^N x_i $
Coproduct \coprod_{i=1}^N x_i $ \coprod_{i=1}^N x_i $
Coproduct (force \textstyle) \textstyle \coprod_{i=1}^N x_i $ \textstyle \coprod_{i=1}^N x_i $
Limit \lim_{n \to \infty}x_n $ \lim_{n \to \infty}x_n $
Limit (force \textstyle) \textstyle \lim_{n \to \infty}x_n $ \textstyle \lim_{n \to \infty}x_n $
Integral \int_{-N}^{N} e^x\, dx $ \int_{-N}^{N} e^x\, dx $
İntegral (force \textstyle) \textstyle \int_{-N}^{N} e^x\, dx $ \textstyle \int_{-N}^{N} e^x\, dx $
Çift katlı integral \iint_{D}^{W} \, dx\,dy $ \iint_{D}^{W} \, dx\,dy $
Üç katlı integral \iiint_{E}^{V} \, dx\,dy\,dz $ \iiint_{E}^{V} \, dx\,dy\,dz $
Dört katlı integral \iiiint_{F}^{U} \, dx\,dy\,dz\,dt $ \iiiint_{F}^{U} \, dx\,dy\,dz\,dt $
Path integral \oint_{C} x^3\, dx + 4y^2\, dy $ \oint_{C} x^3\, dx + 4y^2\, dy $
Intersections \bigcap_1^{n} p $ \bigcap_1^{n} p $
Unions \bigcup_1^{k} p $ \bigcup_1^{k} p $

Fractions, matrices, multilines

Feature Syntax How it looks rendered
Fractions \frac{2}{4}=0.5 $ \frac{2}{4}=0.5 $
Small Fractions \tfrac{2}{4} = 0.5 $ \tfrac{2}{4} = 0.5 $
Large (normal) Fractions \dfrac{2}{4} = 0.5 $ \dfrac{2}{4} = 0.5 $
Large (nestled) Fractions \cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a $ \cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a $
Binomial coefficients \binom{n}{k} $ \binom{n}{k} $
Small Binomial coefficients \tbinom{n}{k} $ \tbinom{n}{k} $
Large (normal) Binomial coefficients \dbinom{n}{k} $ \dbinom{n}{k} $
Matrices
\begin{matrix}
  x & y \\
  z & v 
\end{matrix}
$ \begin{matrix} x & y \\ z & v \end{matrix} $
\begin{vmatrix}
  x & y \\
  z & v 
\end{vmatrix}
$ \begin{vmatrix} x & y \\ z & v \end{vmatrix} $
\begin{Vmatrix}
  x & y \\
  z & v
\end{Vmatrix}
$ \begin{Vmatrix} x & y \\ z & v \end{Vmatrix} $
\begin{bmatrix}
  0      & \cdots & 0      \\
  \vdots & \ddots & \vdots \\ 
  0      & \cdots & 0
\end{bmatrix}
$ \begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0\end{bmatrix} $
\begin{Bmatrix}
  x & y \\
  z & v
\end{Bmatrix}
$ \begin{Bmatrix} x & y \\ z & v \end{Bmatrix} $
\begin{pmatrix}
  x & y \\
  z & v 
\end{pmatrix}
$ \begin{pmatrix} x & y \\ z & v \end{pmatrix} $
\bigl( \begin{smallmatrix}
  a&b\\ c&d
\end{smallmatrix} \bigr)
$ \bigl( \begin{smallmatrix} a&b\\ c&d \end{smallmatrix} \bigr) $
Case distinctions
f(n) = 
\begin{cases} 
  n/2,  & \mbox{if }n\mbox{ is even} \\
  3n+1, & \mbox{if }n\mbox{ is odd} 
\end{cases}
$ f(n) = \begin{cases} n/2, & \mbox{if }n\mbox{ is even} \\ 3n+1, & \mbox{if }n\mbox{ is odd} \end{cases} $
Multiline equations
\begin{align}
 f(x) & = (a+b)^2 \\
      & = a^2+2ab+b^2 \\
\end{align}
$ \begin{align} f(x) & = (a+b)^2 \\ & = a^2+2ab+b^2 \\ \end{align} $
\begin{alignat}{2}
 f(x) & = (a-b)^2 \\
      & = a^2-2ab+b^2 \\
\end{alignat}
$ \begin{alignat}{2} f(x) & = (a-b)^2 \\ & = a^2-2ab+b^2 \\ \end{alignat} $
Multiline equations (must define number of colums used ({lcr}) (should not be used unless needed)
\begin{array}{lcl}
  z        & = & a \\
  f(x,y,z) & = & x + y + z  
\end{array}
$ \begin{array}{lcl} z & = & a \\ f(x,y,z) & = & x + y + z \end{array} $
Multiline equations (more)
\begin{array}{lcr}
  z        & = & a \\
  f(x,y,z) & = & x + y + z     
\end{array}
$ \begin{array}{lcr} z & = & a \\ f(x,y,z) & = & x + y + z \end{array} $
Breaking up a long expression so that it wraps when necessary

<math>f(x) \,\!</math>
<math>= \sum_{n=0}^\infty a_n x^n </math>
<math>= a_0+a_1x+a_2x^2+\cdots</math>

$ f(x) \,\! $$ = \sum_{n=0}^\infty a_n x^n $$ = a_0 +a_1x+a_2x^2+\cdots $

Simultaneous equations
\begin{cases}
    3x + 5y +  z \\
    7x - 2y + 4z \\
   -6x + 3y + 2z 
\end{cases}
$ \begin{cases} 3x + 5y + z \\ 7x - 2y + 4z \\ -6x + 3y + 2z \end{cases} $

Alphabets and typefaces

Greek alphabet
\Alpha \Beta \Gamma \Delta \Epsilon \Zeta $ \Alpha \Beta \Gamma \Delta \Epsilon \Zeta \,\! $
\Eta \Theta \Iota \Kappa \Lambda \Mu $ \Eta \Theta \Iota \Kappa \Lambda \Mu \,\! $
\Nu \Xi \Pi \Rho \Sigma \Tau $ \Nu \Xi \Pi \Rho \Sigma \Tau\,\! $
\Upsilon \Phi \Chi \Psi \Omega $ \Upsilon \Phi \Chi \Psi \Omega \,\! $
\alpha \beta \gamma \delta \epsilon \zeta $ \alpha \beta \gamma \delta \epsilon \zeta \,\! $
\eta \theta \iota \kappa \lambda \mu $ \eta \theta \iota \kappa \lambda \mu \,\! $
\nu \xi \pi \rho \sigma \tau $ \nu \xi \pi \rho \sigma \tau \,\! $
\upsilon \phi \chi \psi \omega $ \upsilon \phi \chi \psi \omega \,\! $
\varepsilon \digamma \vartheta \varkappa $ \varepsilon \digamma \vartheta \varkappa \,\! $
\varpi \varrho \varsigma \varphi $ \varpi \varrho \varsigma \varphi\,\! $
Blackboard Bold/Scripts
\mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G} $ \mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G} \,\! $
\mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M} $ \mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M} \,\! $
\mathbb{N} \mathbb{O} \mathbb{P} \mathbb{Q} \mathbb{R} \mathbb{S} \mathbb{T} $ \mathbb{N} \mathbb{O} \mathbb{P} \mathbb{Q} \mathbb{R} \mathbb{S} \mathbb{T} \,\! $
\mathbb{U} \mathbb{V} \mathbb{W} \mathbb{X} \mathbb{Y} \mathbb{Z} $ \mathbb{U} \mathbb{V} \mathbb{W} \mathbb{X} \mathbb{Y} \mathbb{Z}\,\! $
boldface (vectors)
\mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G} $ \mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G} \,\! $
\mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M} $ \mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M} \,\! $
\mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T} $ \mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T} \,\! $
\mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z} $ \mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z} \,\! $
\mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g} $ \mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g} \,\! $
\mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m} $ \mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m} \,\! $
\mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t} $ \mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t} \,\! $
\mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z} $ \mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z} \,\! $
\mathbf{0} \mathbf{1} \mathbf{2} \mathbf{3} \mathbf{4} $ \mathbf{0} \mathbf{1} \mathbf{2} \mathbf{3} \mathbf{4} \,\! $
\mathbf{5} \mathbf{6} \mathbf{7} \mathbf{8} \mathbf{9} $ \mathbf{5} \mathbf{6} \mathbf{7} \mathbf{8} \mathbf{9}\,\! $
Boldface (greek)
\boldsymbol{\Alpha} \boldsymbol{\Beta} \boldsymbol{\Gamma} \boldsymbol{\Delta} \boldsymbol{\Epsilon} \boldsymbol{\Zeta} $ \boldsymbol{\Alpha} \boldsymbol{\Beta} \boldsymbol{\Gamma} \boldsymbol{\Delta} \boldsymbol{\Epsilon} \boldsymbol{\Zeta} \,\! $
\boldsymbol{\Eta} \boldsymbol{\Theta} \boldsymbol{\Iota} \boldsymbol{\Kappa} \boldsymbol{\Lambda} \boldsymbol{\Mu} $ \boldsymbol{\Eta} \boldsymbol{\Theta} \boldsymbol{\Iota} \boldsymbol{\Kappa} \boldsymbol{\Lambda} \boldsymbol{\Mu}\,\! $
\boldsymbol{\Nu} \boldsymbol{\Xi} \boldsymbol{\Pi} \boldsymbol{\Rho} \boldsymbol{\Sigma} \boldsymbol{\Tau} $ \boldsymbol{\Nu} \boldsymbol{\Xi} \boldsymbol{\Pi} \boldsymbol{\Rho} \boldsymbol{\Sigma} \boldsymbol{\Tau}\,\! $
\boldsymbol{\Upsilon} \boldsymbol{\Phi} \boldsymbol{\Chi} \boldsymbol{\Psi} \boldsymbol{\Omega} $ \boldsymbol{\Upsilon} \boldsymbol{\Phi} \boldsymbol{\Chi} \boldsymbol{\Psi} \boldsymbol{\Omega}\,\! $
\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\epsilon} \boldsymbol{\zeta} $ \boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\epsilon} \boldsymbol{\zeta}\,\! $
\boldsymbol{\eta} \boldsymbol{\theta} \boldsymbol{\iota} \boldsymbol{\kappa} \boldsymbol{\lambda} \boldsymbol{\mu} $ \boldsymbol{\eta} \boldsymbol{\theta} \boldsymbol{\iota} \boldsymbol{\kappa} \boldsymbol{\lambda} \boldsymbol{\mu}\,\! $
\boldsymbol{\nu} \boldsymbol{\xi} \boldsymbol{\pi} \boldsymbol{\rho} \boldsymbol{\sigma} \boldsymbol{\tau} $ \boldsymbol{\nu} \boldsymbol{\xi} \boldsymbol{\pi} \boldsymbol{\rho} \boldsymbol{\sigma} \boldsymbol{\tau}\,\! $
\boldsymbol{\upsilon} \boldsymbol{\phi} \boldsymbol{\chi} \boldsymbol{\psi} \boldsymbol{\omega} $ \boldsymbol{\upsilon} \boldsymbol{\phi} \boldsymbol{\chi} \boldsymbol{\psi} \boldsymbol{\omega}\,\! $
\boldsymbol{\varepsilon} \boldsymbol{\digamma} \boldsymbol{\vartheta} \boldsymbol{\varkappa} $ \boldsymbol{\varepsilon} \boldsymbol{\digamma} \boldsymbol{\vartheta} \boldsymbol{\varkappa} \,\! $
\boldsymbol{\varpi} \boldsymbol{\varrho} \boldsymbol{\varsigma} \boldsymbol{\varphi} $ \boldsymbol{\varpi} \boldsymbol{\varrho} \boldsymbol{\varsigma} \boldsymbol{\varphi}\,\! $
Italics
\mathit{A} \mathit{B} \mathit{C} \mathit{D} \mathit{E} \mathit{F} \mathit{G} $ \mathit{A} \mathit{B} \mathit{C} \mathit{D} \mathit{E} \mathit{F} \mathit{G} \,\! $
\mathit{H} \mathit{I} \mathit{J} \mathit{K} \mathit{L} \mathit{M} $ \mathit{H} \mathit{I} \mathit{J} \mathit{K} \mathit{L} \mathit{M} \,\! $
\mathit{N} \mathit{O} \mathit{P} \mathit{Q} \mathit{R} \mathit{S} \mathit{T} $ \mathit{N} \mathit{O} \mathit{P} \mathit{Q} \mathit{R} \mathit{S} \mathit{T} \,\! $
\mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z} $ \mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z} \,\! $
\mathit{a} \mathit{b} \mathit{c} \mathit{d} \mathit{e} \mathit{f} \mathit{g} $ \mathit{a} \mathit{b} \mathit{c} \mathit{d} \mathit{e} \mathit{f} \mathit{g} \,\! $
\mathit{h} \mathit{i} \mathit{j} \mathit{k} \mathit{l} \mathit{m} $ \mathit{h} \mathit{i} \mathit{j} \mathit{k} \mathit{l} \mathit{m} \,\! $
\mathit{n} \mathit{o} \mathit{p} \mathit{q} \mathit{r} \mathit{s} \mathit{t} $ \mathit{n} \mathit{o} \mathit{p} \mathit{q} \mathit{r} \mathit{s} \mathit{t} \,\! $
\mathit{u} \mathit{v} \mathit{w} \mathit{x} \mathit{y} \mathit{z} $ \mathit{u} \mathit{v} \mathit{w} \mathit{x} \mathit{y} \mathit{z} \,\! $
\mathit{0} \mathit{1} \mathit{2} \mathit{3} \mathit{4} $ \mathit{0} \mathit{1} \mathit{2} \mathit{3} \mathit{4} \,\! $
\mathit{5} \mathit{6} \mathit{7} \mathit{8} \mathit{9} $ \mathit{5} \mathit{6} \mathit{7} \mathit{8} \mathit{9}\,\! $
Roman typeface
\mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G} $ \mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G} \,\! $
\mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M} $ \mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M} \,\! $
\mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T} $ \mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T} \,\! $
\mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z} $ \mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z} \,\! $
\mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g} $ \mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g}\,\! $
\mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m} $ \mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m} \,\! $
\mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t} $ \mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t} \,\! $
\mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z} $ \mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z} \,\! $
\mathrm{0} \mathrm{1} \mathrm{2} \mathrm{3} \mathrm{4} $ \mathrm{0} \mathrm{1} \mathrm{2} \mathrm{3} \mathrm{4} \,\! $
\mathrm{5} \mathrm{6} \mathrm{7} \mathrm{8} \mathrm{9} $ \mathrm{5} \mathrm{6} \mathrm{7} \mathrm{8} \mathrm{9}\,\! $
Fraktur typeface
\mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G} $ \mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G} \,\! $
\mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M} $ \mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M} \,\! $
\mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T} $ \mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T} \,\! $
\mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z} $ \mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z} \,\! $
\mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g} $ \mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g} \,\! $
\mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m} $ \mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m} \,\! $
\mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t} $ \mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t} \,\! $
\mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z} $ \mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z} \,\! $
\mathfrak{0} \mathfrak{1} \mathfrak{2} \mathfrak{3} \mathfrak{4} $ \mathfrak{0} \mathfrak{1} \mathfrak{2} \mathfrak{3} \mathfrak{4} \,\! $
\mathfrak{5} \mathfrak{6} \mathfrak{7} \mathfrak{8} \mathfrak{9} $ \mathfrak{5} \mathfrak{6} \mathfrak{7} \mathfrak{8} \mathfrak{9}\,\! $
Calligraphy/Script
\mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G} $ \mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G} \,\! $
\mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M} $ \mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M} \,\! $
\mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T} $ \mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T} \,\! $
\mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z} $ \mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z}\,\! $
Hebrew
\aleph \beth \gimel \daleth $ \aleph \beth \gimel \daleth\,\! $
Feature Syntax How it looks rendered
non-italicised characters \mbox{abc} $ \mbox{abc} $ $ \mbox{abc} \,\! $
mixed italics (bad) \mbox{if} n \mbox{is even} $ \mbox{if} n \mbox{is even} $ $ \mbox{if} n \mbox{is even} \,\! $
mixed italics (good) \mbox{if }n\mbox{ is even} $ \mbox{if }n\mbox{ is even} $ $ \mbox{if }n\mbox{ is even} \,\! $
mixed italics (more legible: ~ is a non-breaking space, while "\ " forces a space) \mbox{if}~n\ \mbox{is even} $ \mbox{if}~n\ \mbox{is even} $ $ \mbox{if}~n\ \mbox{is even} \,\! $

Parenthesizing big expressions, brackets, bars

Feature Syntax How it looks rendered
Bad ( \frac{1}{2} ) $ ( \frac{1}{2} ) $
Good \left ( \frac{1}{2} \right ) $ \left ( \frac{1}{2} \right ) $

You can use various delimiters with \left and \right:

Feature Syntax How it looks rendered
Parentheses \left ( \frac{a}{b} \right ) $ \left ( \frac{a}{b} \right ) $
Brackets \left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack $ \left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack $
Braces \left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace $ \left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace $
Angle brackets \left \langle \frac{a}{b} \right \rangle $ \left \langle \frac{a}{b} \right \rangle $
Bars and double bars \left | \frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \| $ \left | \frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \| $
Floor and ceiling functions: \left \lfloor \frac{a}{b} \right \rfloor \left \lceil \frac{c}{d} \right \rceil $ \left \lfloor \frac{a}{b} \right \rfloor \left \lceil \frac{c}{d} \right \rceil $
Slashes and backslashes \left / \frac{a}{b} \right \backslash $ \left / \frac{a}{b} \right \backslash $
Up, down and up-down arrows \left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow $ \left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow $

Delimiters can be mixed,
as long as \left and \right match

\left [ 0,1 \right )
\left \langle \psi \right |

$ \left [ 0,1 \right ) $
$ \left \langle \psi \right | $

Use \left. and \right. if you don't
want a delimiter to appear:
\left . \frac{A}{B} \right \} \to X $ \left . \frac{A}{B} \right \} \to X $
Size of the delimiters \big( \Big( \bigg( \Bigg( ... \Bigg] \bigg] \Big] \big]

$ \big( \Big( \bigg( \Bigg( ... \Bigg] \bigg] \Big] \big] $

\big\{ \Big\{ \bigg\{ \Bigg\{ ... \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle

$ \big\{ \Big\{ \bigg\{ \Bigg\{ ... \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle $

\big\| \Big\| \bigg\| \Bigg\| ... \Bigg| \bigg| \Big| \big| $ \big\| \Big\| \bigg\| \Bigg\| ... \Bigg| \bigg| \Big| \big| $
\big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor ... \Bigg\rceil \bigg\rceil \Big\rceil \big\rceil

$ \big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor ... \Bigg\rceil \bigg\rceil \Big\rceil \big\rceil $

\big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow ... \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow

$ \big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow ... \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow $

\big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow ... \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow

$ \big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow ... \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow $

\big / \Big / \bigg / \Bigg / ... \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash

$ \big / \Big / \bigg / \Bigg / ... \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash $

Spacing

Note that TeX handles most spacing automatically, but you may sometimes want manual control.

Feature Syntax How it looks rendered
double quad space a \qquad b $ a \qquad b $
quad space a \quad b $ a \quad b $
text space a\ b $ a\ b $
text space without PNG conversion a \mbox{ } b $ a \mbox{ } b $
large space a\;b $ a\;b $
medium space a\>b [not supported]
small space a\,b $ a\,b $
no space ab $ ab\, $
small negative space a\!b $ a\!b $

Align with normal text flow

Due to the default css

img.tex { vertical-align: middle; }

an inline expression like $ \int_{-N}^{N} e^x\, dx = 2 \sinh N $ should look good.

If you need to align it otherwise, use <font style="vertical-align:-100%;"><math>...</math></font> and play with the vertical-align argument until you get it right; however, how it looks may depend on the browser and the browser settings.

Also note that if you rely on this workaround, if/when the rendering on the server gets fixed in future releases, as a result of this extra manual offset your formulae will suddenly be aligned incorrectly. So use it sparingly, if at all.

Forced PNG rendering

To force the formula to render as PNG, add \, (small space) at the end of the formula (where it is not rendered). This will force PNG if the user is in "HTML if simple" mode, but not for "HTML if possible" mode (math rendering settings in preferences).

You can also use \,\! (small space and negative space, which cancel out) anywhere inside the math tags. This does force PNG even in "HTML if possible" mode, unlike \,.

This could be useful to keep the rendering of formulae in a proof consistent, for example, or to fix formulae that render incorrectly in HTML (at one time, a^{2+2} rendered with an extra underscore), or to demonstrate how something is rendered when it would normally show up as HTML (as in the examples above).

For instance:

Syntax How it looks rendered
a^{c+2} $ a^{c+2} $
a^{c+2} \, $ a^{c+2} \, $
a^{\,\!c+2} $ a^{\,\!c+2} $
a^{b^{c+2}} $ a^{b^{c+2}} $ (WRONG with option "HTML if possible or else PNG"!)
a^{b^{c+2}} \, $ a^{b^{c+2}} \, $ (WRONG with option "HTML if possible or else PNG"!)
a^{b^{c+2}}\approx 5 $ a^{b^{c+2}}\approx 5 $ (due to "$ \approx $" correctly displayed, no code "\,\!" needed)
a^{b^{\,\!c+2}} $ a^{b^{\,\!c+2}} $
\int_{-N}^{N} e^x\, dx $ \int_{-N}^{N} e^x\, dx $


This has been tested with most of the formulae on this page, and seems to work perfectly.

You might want to include a comment in the HTML so people don't "correct" the formula by removing it:

<!-- The \,\! is to keep the formula rendered as PNG instead of HTML. Please don't remove it.-->

Color

Equations can use color:

  • {\color{Blue}x^2}+{\color{Brown}2x}-{\color{OliveGreen}1}
    $ {\color{Blue}x^2}+{\color{Brown}2x}-{\color{OliveGreen}1} $
  • x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a}
    $ x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a} $

See here for all named colours supported by LaTeX.

Note that color should not be used as the only way to identify something because color blind people may not be able to distinguish between the two colors. See en:Wikipedia:Manual of Style#Formatting issues.

Examples

Quadratic Polynomial

$ ax^2 + bx + c = 0 $
<math>ax^2 + bx + c = 0</math>

Quadratic Polynomial (Force PNG Rendering)

$ ax^2 + bx + c = 0\,\! $

<math>ax^2 + bx + c = 0\,\!</math>

Quadratic Formula

$ x=\frac{-b\pm\sqrt{b^2-4ac}}{2a} $

<math>x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}</math>

Tall Parentheses and Fractions

$ 2 = \left( \frac{\left(3-x\right) \times 2}{3-x} \right) $

<math>2 = \left(
 \frac{\left(3-x\right) \times 2}{3-x}
 \right)</math>
$ S_{new} = S_{old} + \frac{ \left( 5-T \right) ^2} {2} $

<math>S_{new} = S_{old} +
 \frac{ \left( 5-T \right) ^2} {2}</math>

Integrals

$ \int_a^x \int_a^s f(y)\,dy\,ds = \int_a^x f(y)(x-y)\,dy $

<math>\int_a^x \int_a^s f(y)\,dy\,ds
 = \int_a^x f(y)(x-y)\,dy</math>

Summation

$ \sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n}{3^m\left(m\,3^n+n\,3^m\right)} $
<math>\sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n}
 {3^m\left(m\,3^n+n\,3^m\right)}</math>

Differential Equation

$ u'' + p(x)u' + q(x)u=f(x),\quad x>a $

<math>u'' + p(x)u' + q(x)u=f(x),\quad x>a</math>

Complex numbers

$ |\bar{z}| = |z|, |(\bar{z})^n| = |z|^n, \arg(z^n) = n \arg(z) $

<math>|\bar{z}| = |z|,
 |(\bar{z})^n| = |z|^n,
 \arg(z^n) = n \arg(z)</math>

Limits

$ \lim_{z\rightarrow z_0} f(z)=f(z_0) $

<math>\lim_{z\rightarrow z_0} f(z)=f(z_0)</math>

Integral Equation

$ \phi_n(\kappa)  = \frac{1}{4\pi^2\kappa^2} \int_0^\infty \frac{\sin(\kappa R)}{\kappa R}  \frac{\partial}{\partial R}  \left[R^2\frac{\partial D_n(R)}{\partial R}\right]\,dR $

<math>\phi_n(\kappa) =
 \frac{1}{4\pi^2\kappa^2} \int_0^\infty
 \frac{\sin(\kappa R)}{\kappa R}
 \frac{\partial}{\partial R}
 \left[R^2\frac{\partial D_n(R)}{\partial R}\right]\,dR</math>

Example

$ \phi_n(\kappa) = 0.033C_n^2\kappa^{-11/3},\quad \frac{1}{L_0}\ll\kappa\ll\frac{1}{l_0} $

<math>\phi_n(\kappa) = 
 0.033C_n^2\kappa^{-11/3},\quad
 \frac{1}{L_0}\ll\kappa\ll\frac{1}{l_0}</math>

Continuation and cases

$ f(x) = \begin{cases}1 & -1 \le x < 0 \\  \frac{1}{2} & x = 0 \\ 1 - x^2 & 0 < x \le 1\end{cases} $

<math>
 f(x) =
 \begin{cases}
 1 & -1 \le x < 0 \\
 \frac{1}{2} & x = 0 \\
 1 - x^2 & 0 < x\le 1
 \end{cases}
 </math>

Prefixed subscript

$ {}_pF_q(a_1,\dots,a_p;c_1,\dots,c_q;z) = \sum_{n=0}^\infty \frac{(a_1)_n\cdot\cdot\cdot(a_p)_n}{(c_1)_n\cdot\cdot\cdot(c_q)_n}\frac{z^n}{n!} $

 <math>{}_pF_q(a_1,\dots,a_p;c_1,\dots,c_q;z)
 = \sum_{n=0}^\infty
 \frac{(a_1)_n\cdot\cdot\cdot(a_p)_n}{(c_1)_n\cdot\cdot\cdot(c_q)_n}
 \frac{z^n}{n!}</math>

Bug reports

Discussions, bug reports and feature requests should go to the Wikitech-l mailing list. These can also be filed on Mediazilla under MediaWiki extensions.

See also

External links