"Hölder Eşitsizliği" sayfasının sürümleri arasındaki fark
turkmathviki sitesinden
1. satır: | 1. satır: | ||
+ | '''Hölder eşitsizliği''' | ||
+ | |||
<math>p>1,\; \frac{1}{p}+\frac{1}{q}=1,\; \forall n\in\mathbb{N}</math> için <math> u_n,v_n\in\mathbb{C},\; \sum |u_n|^p<\infty,\; \sum |v_n|^q<\infty </math> olmak üzere, adına Hölder eşitsizliği denilen aşağıdaki eşitsizlik geçerlidir: | <math>p>1,\; \frac{1}{p}+\frac{1}{q}=1,\; \forall n\in\mathbb{N}</math> için <math> u_n,v_n\in\mathbb{C},\; \sum |u_n|^p<\infty,\; \sum |v_n|^q<\infty </math> olmak üzere, adına Hölder eşitsizliği denilen aşağıdaki eşitsizlik geçerlidir: | ||
13:13, 12 Mart 2022 itibarı ile sayfanın şu anki hâli
Hölder eşitsizliği
$ p>1,\; \frac{1}{p}+\frac{1}{q}=1,\; \forall n\in\mathbb{N} $ için $ u_n,v_n\in\mathbb{C},\; \sum |u_n|^p<\infty,\; \sum |v_n|^q<\infty $ olmak üzere, adına Hölder eşitsizliği denilen aşağıdaki eşitsizlik geçerlidir:
$ \sum |u_n.v_n|\leq \left(\sum|u_n|^p\right)^{1/p} . \left(\sum|v_n|^q\right)^{1/q} $ .