"Matematiksel formüller" sayfasının sürümleri arasındaki fark

turkmathviki sitesinden
Atla: kullan, ara
(Kodlama)
2. satır: 2. satır:
  
  
<!--More precisely, MediaWiki filters the markup through [[w:Texvc|Texvc]], which in turn passes the commands to TeX for the actual [[w:Rendering (computer graphics)|render]]ing. Thus, only a limited part of the full TeX language is supported; see below for details.-->
+
UNIQ0a986f19d8118a5a-item-1285--QINU
 
+
 
__TOC__
 
__TOC__
  
 
==Kodlama==
 
==Kodlama==
Matematiksel kodlar <code><nowiki><math> ... </math></nowiki></code> kodları arasına yazılır.
+
Matematiksel kodlar UNIQ0a986f19d8118a5a-code-00000506-QINU arasına yazılır.
 
Düzenleme yapılan sayfadaki araç kutusunda bunun için bir buton vardır. HTML'de olduğu gibi Tex'de de bir taneden fazla verilen boşluklar ve boş satırlar dikkate alınmaz. Tex kodları doğru yazılmadıkları zaman hata uyarısı verirler. Bu nedenle kodları doğru yazdığınızdan emin olmalısınız.
 
Düzenleme yapılan sayfadaki araç kutusunda bunun için bir buton vardır. HTML'de olduğu gibi Tex'de de bir taneden fazla verilen boşluklar ve boş satırlar dikkate alınmaz. Tex kodları doğru yazılmadıkları zaman hata uyarısı verirler. Bu nedenle kodları doğru yazdığınızdan emin olmalısınız.
  
<!--The TeX code has to be put literally: MediaWiki templates, predefined templates, and parameters cannot be used within math tags: pairs of double braces are ignored and  "#" gives an error message. However, math tags work in the then and else part of #if, etc. See {{tim|Demo of attempt to use parameters within TeX}}.-->
+
UNIQ0a986f19d8118a5a-item-1287--QINU
 
+
 
==Sunum==
 
==Sunum==
  
<!--The PNG images are black on white (not transparent). These colors, as well as font sizes and types, are independent of browser settings or CSS. Font sizes and types will often deviate from what HTML renders. Vertical alignment with the surrounding text can also be a problem. The [[Help:User style#CSS_selectors|css selector]] of the images is img.tex.-->
+
UNIQ0a986f19d8118a5a-item-1288--QINU
 
+
 
It should be pointed out that most of these shortcomings have been addressed by [[m:Help talk:Formula#Maynard_Handley.27s_suggestions|Maynard Handley]], but have not been released yet.
 
It should be pointed out that most of these shortcomings have been addressed by [[m:Help talk:Formula#Maynard_Handley.27s_suggestions|Maynard Handley]], but have not been released yet.
  
The <code>alt</code> attribute of the PNG images (the text that is displayed if your browser can't display images; Internet Explorer shows it up in the hover box) is the wikitext that produced them, excluding the <code><nowiki><math></nowiki></code> and <code><nowiki></math></nowiki></code>.
+
The UNIQ0a986f19d8118a5a-code-00000509-QINU attribute of the PNG images (the text that is displayed if your browser can't display images; Internet Explorer shows it up in the hover box) is the wikitext that produced them, excluding the UNIQ0a986f19d8118a5a-code-0000050A-QINU and UNIQ0a986f19d8118a5a-code-0000050B-QINU.
  
Apart from function and operator names, as is customary in mathematics for variables, letters are in italics; digits are not. For other text, (like variable labels) to avoid being rendered in italics like variables, use <code>\mbox</code> or <code>\mathrm</code>. For example,  <code><nowiki><math>\mbox{abc}</math></nowiki></code> gives <math>\mbox{abc}</math>.
+
Apart from function and operator names, as is customary in mathematics for variables, letters are in italics; digits are not. For other text, (like variable labels) to avoid being rendered in italics like variables, use UNIQ0a986f19d8118a5a-code-0000050C-QINU or UNIQ0a986f19d8118a5a-code-0000050D-QINU. For example,  UNIQ0a986f19d8118a5a-code-0000050E-QINU gives UNIQ0a986f19d8118a5a-math-0000050F-QINU.
  
 
==TeX ve HTML==
 
==TeX ve HTML==
32. satır: 29. satır:
 
! HTML çıktısı
 
! HTML çıktısı
 
|-
 
|-
| <code><nowiki><math>\alpha\,</math></nowiki></code>
+
| UNIQ0a986f19d8118a5a-code-00000510-QINU
| <math>\alpha\,</math>
+
| UNIQ0a986f19d8118a5a-math-00000511-QINU
| <code><nowiki>&amp;alpha;</nowiki></code>
+
| UNIQ0a986f19d8118a5a-code-00000512-QINU
 
| &alpha;
 
| &alpha;
 
|-
 
|-
| <code><nowiki><math>\sqrt{2}</math></nowiki></code>
+
| UNIQ0a986f19d8118a5a-code-00000513-QINU
| <math>\sqrt{2}</math>
+
| UNIQ0a986f19d8118a5a-math-00000514-QINU
| <code><nowiki>&amp;radic;2</nowiki></code>
+
| UNIQ0a986f19d8118a5a-code-00000515-QINU
 
| &radic;2
 
| &radic;2
 
|-
 
|-
| <code><nowiki><math>\sqrt{1-e^2}</math></nowiki></code>
+
| UNIQ0a986f19d8118a5a-code-00000516-QINU
| <math>\sqrt{1-e^2}</math>
+
| UNIQ0a986f19d8118a5a-math-00000517-QINU
| <code><nowiki>&amp;radic;<span style="text-decoration: overline;">1&amp;minus;''e''&amp;sup2;</div></nowiki></code>
+
| UNIQ0a986f19d8118a5a-code-00000518-QINU
 
| &radic;<span style="text-decoration: overline;">1&minus;''e''&sup2;</div>
 
| &radic;<span style="text-decoration: overline;">1&minus;''e''&sup2;</div>
 
|}
 
|}
  
  
<!--The use of HTML instead of TeX is still under discussion. The arguments either way can be summarised-->
+
UNIQ0a986f19d8118a5a-item-1305--QINUas follows.
as follows.
+
  
 
===HTML'nin avantajları===
 
===HTML'nin avantajları===
60. satır: 56. satır:
 
===TeX kullanımının avantajları===
 
===TeX kullanımının avantajları===
 
#Tex kalite bakımından HTML'den ileri bir yazılımdır.  
 
#Tex kalite bakımından HTML'den ileri bir yazılımdır.  
#Tex yazılımında "<code><nowiki><math>x</math></nowiki></code>" kodlaması matematiksel değişken anlamına gelir. Fakat HTML'de "<code>x</code>" kodlaması herhangi bir anlama gelebilir. Bu yüzden bilgiler daha kolay kaybolabilir.
+
#Tex yazılımında "UNIQ0a986f19d8118a5a-code-0000051A-QINU" kodlaması matematiksel değişken anlamına gelir. Fakat HTML'de "UNIQ0a986f19d8118a5a-code-0000051B-QINU" kodlaması herhangi bir anlama gelebilir. Bu yüzden bilgiler daha kolay kaybolabilir.
 
#TeX yazılımı özellikle formül yazımı için tasarlanmıştır. Bu nedenle daha kolay ve daha işlevseldir.
 
#TeX yazılımı özellikle formül yazımı için tasarlanmıştır. Bu nedenle daha kolay ve daha işlevseldir.
 
# One consequence of point 1 is that TeX can be transformed into HTML, but not vice-versa. This means that on the server side we can always transform a formula, based on its complexity and location within the text, user preferences, type of browser, etc. Therefore, where possible, all the benefits of HTML can be retained, together with the benefits of TeX. It's true that the current situation is not ideal, but that's not a good reason to drop information/contents. It's more a reason to [[#Bug_reports|help improve the situation]].
 
# One consequence of point 1 is that TeX can be transformed into HTML, but not vice-versa. This means that on the server side we can always transform a formula, based on its complexity and location within the text, user preferences, type of browser, etc. Therefore, where possible, all the benefits of HTML can be retained, together with the benefits of TeX. It's true that the current situation is not ideal, but that's not a good reason to drop information/contents. It's more a reason to [[#Bug_reports|help improve the situation]].
68. satır: 64. satır:
 
== Fonksiyonlar, semboller, özel karakterler ==
 
== Fonksiyonlar, semboller, özel karakterler ==
  
<!-- Eight symbols per line seems to be optimal-->
+
UNIQ0a986f19d8118a5a-item-1308--QINU{| class="wikitable"
{| class="wikitable"
+
 
! colspan="2" |<h3>Aksanlar/Vurgular</h3>
 
! colspan="2" |<h3>Aksanlar/Vurgular</h3>
 
|-
 
|-
|<code>\acute{a} \grave{a} \hat{a} \tilde{a} \breve{a}</code>
+
|UNIQ0a986f19d8118a5a-code-0000051D-QINU
|<math>\acute{a} \grave{a} \hat{a} \tilde{a} \breve{a}\,\!</math>
+
|UNIQ0a986f19d8118a5a-math-0000051E-QINU
 
|-
 
|-
|<code>\check{a} \bar{a} \ddot{a} \dot{a}</code>
+
|UNIQ0a986f19d8118a5a-code-0000051F-QINU
|<math>\check{a} \bar{a} \ddot{a} \dot{a}\,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000520-QINU
 
|-
 
|-
 
! colspan="2" |
 
! colspan="2" |
82. satır: 77. satır:
 
<h3>Standart fonksiyonlar</h3>
 
<h3>Standart fonksiyonlar</h3>
 
|-
 
|-
|<code>\sin a \cos b \tan c</code>
+
|UNIQ0a986f19d8118a5a-code-00000521-QINU
|<math>\sin a \cos b \tan c\,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000522-QINU
 
|-
 
|-
|<code>\sec d \csc e \cot f</code>
+
|UNIQ0a986f19d8118a5a-code-00000523-QINU
|<math>\sec d \csc e \cot f\,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000524-QINU
 
|-
 
|-
|<code>\arcsin h \arccos i \arctan j</code>
+
|UNIQ0a986f19d8118a5a-code-00000525-QINU
|<math>\arcsin h \arccos i \arctan j\,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000526-QINU
 
|-
 
|-
|<code>\sinh k \cosh l \tanh m \coth n</code>
+
|UNIQ0a986f19d8118a5a-code-00000527-QINU
|<math>\sinh k \cosh l \tanh m \coth n\,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000528-QINU
 
|-
 
|-
|<code>\operatorname{sh}o \operatorname{ch}p \operatorname{th}q</code>
+
|UNIQ0a986f19d8118a5a-code-00000529-QINU
|<math>\operatorname{sh}o \operatorname{ch}p \operatorname{th}q\,\!</math>
+
|UNIQ0a986f19d8118a5a-math-0000052A-QINU
 
|-
 
|-
|<code>\operatorname{argsh}r \operatorname{argch}s \operatorname{argth}t</code>
+
|UNIQ0a986f19d8118a5a-code-0000052B-QINU
|<math>\operatorname{argsh}r \operatorname{argch}s \operatorname{argth}t\,\!</math>
+
|UNIQ0a986f19d8118a5a-math-0000052C-QINU
 
|-
 
|-
|<code>\lim u \limsup v \liminf w \min x \max y</code>
+
|UNIQ0a986f19d8118a5a-code-0000052D-QINU
|<math>\lim u \limsup v \liminf w \min x \max y\,\!</math>
+
|UNIQ0a986f19d8118a5a-math-0000052E-QINU
 
|-
 
|-
|<code>\inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g</code>
+
|UNIQ0a986f19d8118a5a-code-0000052F-QINU
|<math>\inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g\,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000530-QINU
 
|-
 
|-
|<code>\deg h \gcd i \Pr j \det k \hom l \arg m \dim n</code>
+
|UNIQ0a986f19d8118a5a-code-00000531-QINU
|<math>\deg h \gcd i \Pr j \det k \hom l \arg m \dim n\,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000532-QINU
 
|-
 
|-
 
! colspan="2" | <h3>Modüler aritmatik</h3>
 
! colspan="2" | <h3>Modüler aritmatik</h3>
 
|-
 
|-
|<code>s_k \equiv 0 \pmod{m} a \bmod b</code>
+
|UNIQ0a986f19d8118a5a-code-00000533-QINU
|<math>s_k \equiv 0 \pmod{m} a \bmod b\,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000534-QINU
 
|-
 
|-
 
! colspan="2" |
 
! colspan="2" |
118. satır: 113. satır:
 
<h3>Türevsel karakterler</h3>
 
<h3>Türevsel karakterler</h3>
 
|-
 
|-
|<code>\nabla \partial x dx \dot x \ddot y</code>
+
|UNIQ0a986f19d8118a5a-code-00000535-QINU
|<math>\nabla \partial x dx \dot x \ddot y\,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000536-QINU
 
|-
 
|-
 
! colspan="2" |
 
! colspan="2" |
125. satır: 120. satır:
 
<h3>Kümeler</h3>
 
<h3>Kümeler</h3>
 
|-
 
|-
|<code>\forall \exists \empty \emptyset \varnothing</code>
+
|UNIQ0a986f19d8118a5a-code-00000537-QINU
|<math>\forall \exists \empty \emptyset \varnothing\,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000538-QINU
 
|-
 
|-
|<code>\in \ni \not \in \notin \subset \subseteq \supset \supseteq</code>
+
|UNIQ0a986f19d8118a5a-code-00000539-QINU
|<math>\in \ni \not \in \notin \subset \subseteq \supset \supseteq\,\!</math>
+
|UNIQ0a986f19d8118a5a-math-0000053A-QINU
 
|-
 
|-
|<code>\cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus</code>
+
|UNIQ0a986f19d8118a5a-code-0000053B-QINU
|<math>\cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus\,\!</math>
+
|UNIQ0a986f19d8118a5a-math-0000053C-QINU
 
|-
 
|-
|<code>\sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup</code>
+
|UNIQ0a986f19d8118a5a-code-0000053D-QINU
|<math>\sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup\,\!</math>
+
|UNIQ0a986f19d8118a5a-math-0000053E-QINU
 
|-
 
|-
 
! colspan="2" |
 
! colspan="2" |
141. satır: 136. satır:
 
<h3>Operatör işaretler</h3>
 
<h3>Operatör işaretler</h3>
 
|-
 
|-
|<code>+ \oplus \bigoplus \pm \mp - </code>
+
|UNIQ0a986f19d8118a5a-code-0000053F-QINU
|<math>+ \oplus \bigoplus \pm \mp - \,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000540-QINU
 
|-
 
|-
|<code>\times \otimes \bigotimes \cdot \circ \bullet \bigodot</code>
+
|UNIQ0a986f19d8118a5a-code-00000541-QINU
|<math>\times \otimes \bigotimes \cdot \circ \bullet \bigodot\,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000542-QINU
 
|-
 
|-
|<code>\star * / \div \frac{1}{2}</code>
+
|UNIQ0a986f19d8118a5a-code-00000543-QINU
|<math>\star * / \div \frac{1}{2}\,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000544-QINU
 
|-
 
|-
 
! colspan="2" |
 
! colspan="2" |
154. satır: 149. satır:
 
<h3>Mantıksal ifadeler</h3>
 
<h3>Mantıksal ifadeler</h3>
 
|-
 
|-
|<code>\land \wedge \bigwedge \bar{q} \to p</code>
+
|UNIQ0a986f19d8118a5a-code-00000545-QINU
|<math>\land \wedge \bigwedge \bar{q} \to p\,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000546-QINU
 
|-
 
|-
|<code>\lor \vee \bigvee \lnot \neg q \And</code>
+
|UNIQ0a986f19d8118a5a-code-00000547-QINU
|<math>\lor \vee \bigvee \lnot \neg q \And\,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000548-QINU
 
|-
 
|-
 
! colspan="2" |
 
! colspan="2" |
164. satır: 159. satır:
 
<h3>Kök alma</h3>
 
<h3>Kök alma</h3>
 
|-
 
|-
|<code>\sqrt{2} \sqrt[n]{x}</code>
+
|UNIQ0a986f19d8118a5a-code-00000549-QINU
|<math>\sqrt{2} \sqrt[n]{x}\,\!</math>
+
|UNIQ0a986f19d8118a5a-math-0000054A-QINU
 
|-
 
|-
 
! colspan="2" |
 
! colspan="2" |
171. satır: 166. satır:
 
<h3>Eşitlik/Denklik/Benzerlik işaretleri</h3>
 
<h3>Eşitlik/Denklik/Benzerlik işaretleri</h3>
 
|-
 
|-
|<code>\sim \approx \simeq \cong \dot=  \overset{\underset{\mathrm{def}}{}}{=}</code>
+
|UNIQ0a986f19d8118a5a-code-0000054B-QINU
|<math>\sim \approx \simeq \cong \dot=  \overset{\underset{\mathrm{def}}{}}{=}\,\!</math>
+
|UNIQ0a986f19d8118a5a-math-0000054C-QINU
 
|-
 
|-
|<code>\le < \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto</code>
+
|UNIQ0a986f19d8118a5a-code-0000054D-QINU
|<math>\le < \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto\,\!</math>
+
|UNIQ0a986f19d8118a5a-math-0000054E-QINU
 
|-
 
|-
 
! colspan="2" |
 
! colspan="2" |
181. satır: 176. satır:
 
<h3>Geometrik</h3>
 
<h3>Geometrik</h3>
 
|-
 
|-
|<code><nowiki>\Diamond \Box \triangle \angle \perp \mid \nmid \| 45^\circ</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-0000054F-QINU
|<math>\Diamond \, \Box \, \triangle \, \angle \perp \, \mid \; \nmid \, \| 45^\circ\,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000550-QINU
 
|-
 
|-
 
! colspan="2" |
 
! colspan="2" |
188. satır: 183. satır:
 
<h3>Oklar/Bildiri ifadeleri</h3>
 
<h3>Oklar/Bildiri ifadeleri</h3>
 
|-
 
|-
|<code>\leftarrow \gets \rightarrow \to \not\to \leftrightarrow \longleftarrow \longrightarrow</code>
+
|UNIQ0a986f19d8118a5a-code-00000551-QINU
|<math>\leftarrow \gets \rightarrow \to \not\to \leftrightarrow \longleftarrow \longrightarrow\,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000552-QINU
 
|-
 
|-
|<code>\mapsto \longmapsto \hookrightarrow \hookleftarrow \nearrow \searrow \swarrow \nwarrow</code>
+
|UNIQ0a986f19d8118a5a-code-00000553-QINU
|<math>\mapsto \longmapsto \hookrightarrow \hookleftarrow \nearrow \searrow \swarrow \nwarrow\,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000554-QINU
 
|-
 
|-
|<code>\uparrow \downarrow \updownarrow \rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft</code>
+
|UNIQ0a986f19d8118a5a-code-00000555-QINU
|<math>\uparrow \downarrow \updownarrow \rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft\,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000556-QINU
 
|-
 
|-
|<code>\upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \Leftarrow \Rightarrow \Leftrightarrow \Longleftarrow</code>
+
|UNIQ0a986f19d8118a5a-code-00000557-QINU
|<math>\upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \Leftarrow \Rightarrow \Leftrightarrow \Longleftarrow\,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000558-QINU
 
|-
 
|-
|<code>\Longrightarrow \Longleftrightarrow (or \iff) \Uparrow \Downarrow \Updownarrow \leftleftarrows \leftrightarrows \Lleftarrow \leftarrowtail \looparrowleft </code>
+
|UNIQ0a986f19d8118a5a-code-00000559-QINU
|<math>\Longrightarrow \Longleftrightarrow \Uparrow \Downarrow \Updownarrow \leftleftarrows \leftrightarrows \Lleftarrow \leftarrowtail \looparrowleft \,\!</math>
+
|UNIQ0a986f19d8118a5a-math-0000055A-QINU
 
|-
 
|-
|<code>\leftrightharpoons  \curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \Rrightarrow \rightarrowtail \looparrowright</code>
+
|UNIQ0a986f19d8118a5a-code-0000055B-QINU
|<math>\leftrightharpoons  \curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \Rrightarrow \rightarrowtail \looparrowright\,\!</math>
+
|UNIQ0a986f19d8118a5a-math-0000055C-QINU
 
|-
 
|-
|<code>\curvearrowright \circlearrowright \Rsh \downdownarrows \multimap \leftrightsquigarrow \rightsquigarrow \nLeftarrow \nleftrightarrow \nRightarrow</code>
+
|UNIQ0a986f19d8118a5a-code-0000055D-QINU
|<math>\curvearrowright \circlearrowright \Rsh \downdownarrows \multimap \leftrightsquigarrow \rightsquigarrow \nLeftarrow \nleftrightarrow \nRightarrow\,\!</math>
+
|UNIQ0a986f19d8118a5a-math-0000055E-QINU
 
|-
 
|-
|<code>\nLeftrightarrow \longleftrightarrow</code>
+
|UNIQ0a986f19d8118a5a-code-0000055F-QINU
|<math>\nLeftrightarrow \longleftrightarrow\,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000560-QINU
 
|-
 
|-
 
! colspan="2" | <h3>Özel</h3>
 
! colspan="2" | <h3>Özel</h3>
 
|-
 
|-
|<code>\eth \S \P \% \dagger \ddagger \ldots \cdots</code>
+
|UNIQ0a986f19d8118a5a-code-00000561-QINU
|<math>\eth \S \P \% \dagger \ddagger \ldots \cdots\,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000562-QINU
 
|-
 
|-
|<code>\smile \frown \wr \triangleleft \triangleright \infty \bot \top</code>
+
|UNIQ0a986f19d8118a5a-code-00000563-QINU
|<math>\smile \frown \wr \triangleleft \triangleright \infty \bot \top\,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000564-QINU
 
|-
 
|-
|<code>\vdash \vDash \Vdash \models \lVert \rVert \imath \hbar</code>
+
|UNIQ0a986f19d8118a5a-code-00000565-QINU
|<math>\vdash \vDash \Vdash \models \lVert \rVert \imath \hbar\,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000566-QINU
 
|-
 
|-
|<code>\ell \mho \Finv \Re \Im \wp \complement \diamondsuit</code>
+
|UNIQ0a986f19d8118a5a-code-00000567-QINU
|<math>\ell \mho \Finv \Re \Im \wp \complement \diamondsuit\,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000568-QINU
 
|-
 
|-
|<code>\heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp</code>
+
|UNIQ0a986f19d8118a5a-code-00000569-QINU
|<math>\heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp\,\!</math>
+
|UNIQ0a986f19d8118a5a-math-0000056A-QINU
 
|-
 
|-
 
! colspan="2" |
 
! colspan="2" |
233. satır: 228. satır:
 
<h3>Unsorted (new stuff)</h3>
 
<h3>Unsorted (new stuff)</h3>
 
|-
 
|-
|<code> \vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown</code>
+
|UNIQ0a986f19d8118a5a-code-0000056B-QINU
|<math> \vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown</math>
+
|UNIQ0a986f19d8118a5a-math-0000056C-QINU
 
|-
 
|-
|<code> \blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge</code>
+
|UNIQ0a986f19d8118a5a-code-0000056D-QINU
|<math> \blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge</math>
+
|UNIQ0a986f19d8118a5a-math-0000056E-QINU
 
|-
 
|-
|<code> \veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes</code>
+
|UNIQ0a986f19d8118a5a-code-0000056F-QINU
|<math> \veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes</math>
+
|UNIQ0a986f19d8118a5a-math-00000570-QINU
 
|-
 
|-
|<code> \rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant</code>
+
|UNIQ0a986f19d8118a5a-code-00000571-QINU
|<math> \rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant</math>
+
|UNIQ0a986f19d8118a5a-math-00000572-QINU
 
|-
 
|-
|<code> \eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot \risingdotseq</code>
+
|UNIQ0a986f19d8118a5a-code-00000573-QINU
|<math> \eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot \risingdotseq</math>
+
|UNIQ0a986f19d8118a5a-math-00000574-QINU
 
|-
 
|-
|<code> \fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox \vartriangleleft</code>
+
|UNIQ0a986f19d8118a5a-code-00000575-QINU
|<math> \fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox \vartriangleleft</math>
+
|UNIQ0a986f19d8118a5a-math-00000576-QINU
 
|-
 
|-
|<code> \Vvdash \bumpeq \Bumpeq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox \eqsim \gtrdot</code>
+
|UNIQ0a986f19d8118a5a-code-00000577-QINU
|<math> \Vvdash \bumpeq \Bumpeq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox \eqsim \gtrdot</math>
+
|UNIQ0a986f19d8118a5a-math-00000578-QINU
 
|-
 
|-
|<code> \ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq</code>
+
|UNIQ0a986f19d8118a5a-code-00000579-QINU
|<math> \ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq</math>
+
|UNIQ0a986f19d8118a5a-math-0000057A-QINU
 
|-
 
|-
|<code> \Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \shortparallel \between \pitchfork</code>
+
|UNIQ0a986f19d8118a5a-code-0000057B-QINU
|<math> \Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \shortparallel \between \pitchfork</math>
+
|UNIQ0a986f19d8118a5a-math-0000057C-QINU
 
|-
 
|-
|<code> \varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq</code>
+
|UNIQ0a986f19d8118a5a-code-0000057D-QINU
|<math> \varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq</math>
+
|UNIQ0a986f19d8118a5a-math-0000057E-QINU
 
|-
 
|-
|<code> \lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid</code>
+
|UNIQ0a986f19d8118a5a-code-0000057F-QINU
|<math> \lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid</math>
+
|UNIQ0a986f19d8118a5a-math-00000580-QINU
 
|-
 
|-
|<code> \nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \varsubsetneq \subsetneqq \varsubsetneqq \ngtr</code>
+
|UNIQ0a986f19d8118a5a-code-00000581-QINU
|<math> \nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \varsubsetneq \subsetneqq \varsubsetneqq \ngtr</math>
+
|UNIQ0a986f19d8118a5a-math-00000582-QINU
 
|-
 
|-
|<code> \ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq</code>
+
|UNIQ0a986f19d8118a5a-code-00000583-QINU
|<math> \ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq</math>
+
|UNIQ0a986f19d8118a5a-math-00000584-QINU
 
|-
 
|-
|<code> \succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq</code>
+
|UNIQ0a986f19d8118a5a-code-00000585-QINU
|<math> \succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq</math>
+
|UNIQ0a986f19d8118a5a-math-00000586-QINU
 
|-
 
|-
|<code> \nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq</code>
+
|UNIQ0a986f19d8118a5a-code-00000587-QINU
|<math> \nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq</math>
+
|UNIQ0a986f19d8118a5a-math-00000588-QINU
 
|-
 
|-
|<code>\jmath \surd \ast \uplus \diamond \bigtriangleup \bigtriangledown \ominus</code>
+
|UNIQ0a986f19d8118a5a-code-00000589-QINU
|<math>\jmath \surd \ast \uplus \diamond \bigtriangleup \bigtriangledown \ominus\,\!</math>
+
|UNIQ0a986f19d8118a5a-math-0000058A-QINU
 
|-
 
|-
|<code>\oslash \odot \bigcirc \amalg \prec \succ \preceq \succeq</code>
+
|UNIQ0a986f19d8118a5a-code-0000058B-QINU
|<math>\oslash \odot \bigcirc \amalg \prec \succ \preceq \succeq\,\!</math>
+
|UNIQ0a986f19d8118a5a-math-0000058C-QINU
 
|-
 
|-
|<code>\dashv \asymp \doteq \parallel</code>
+
|UNIQ0a986f19d8118a5a-code-0000058D-QINU
|<math>\dashv \asymp \doteq \parallel\,\!</math>
+
|UNIQ0a986f19d8118a5a-math-0000058E-QINU
 
|}
 
|}
  
295. satır: 290. satır:
 
|-
 
|-
 
|-
 
|-
|Superscript||<code>a^2</code>||<math>a^2</math>||<math>a^2 \,\!</math>
+
|Superscript||UNIQ0a986f19d8118a5a-code-0000058F-QINU||UNIQ0a986f19d8118a5a-math-00000590-QINU||UNIQ0a986f19d8118a5a-math-00000591-QINU
 
|-
 
|-
|Subscript||<code>a_2</code>||<math>a_2</math>||<math>a_2 \,\!</math>
+
|Subscript||UNIQ0a986f19d8118a5a-code-00000592-QINU||UNIQ0a986f19d8118a5a-math-00000593-QINU||UNIQ0a986f19d8118a5a-math-00000594-QINU
 
|-
 
|-
|rowspan=2|Grouping||<code>a^{2+2}</code>||<math>a^{2+2}</math>||<math>a^{2+2}\,\!</math>
+
|rowspan=2|Grouping||UNIQ0a986f19d8118a5a-code-00000595-QINU||UNIQ0a986f19d8118a5a-math-00000596-QINU||UNIQ0a986f19d8118a5a-math-00000597-QINU
 
|-
 
|-
|<code>a_{i,j}</code>||<math>a_{i,j}</math>||<math>a_{i,j}\,\!</math>
+
|UNIQ0a986f19d8118a5a-code-00000598-QINU||UNIQ0a986f19d8118a5a-math-00000599-QINU||UNIQ0a986f19d8118a5a-math-0000059A-QINU
 
|-
 
|-
|Combining sub & super||<code>x_2^3</code>||colspan=2|<math>x_2^3</math>
+
|Combining sub & super||UNIQ0a986f19d8118a5a-code-0000059B-QINU||colspan=2|UNIQ0a986f19d8118a5a-math-0000059C-QINU
 
|-
 
|-
|rowspan="2"|Preceding and/or Additional sub & super||<code>\sideset{_1^2}{_3^4}\prod_a^b</code>||colspan=2|<math>\sideset{_1^2}{_3^4}\prod_a^b</math>
+
|rowspan="2"|Preceding and/or Additional sub & super||UNIQ0a986f19d8118a5a-code-0000059D-QINU||colspan=2|UNIQ0a986f19d8118a5a-math-0000059E-QINU
 
|-
 
|-
|<code>{}_1^2\!\Omega_3^4</code>||colspan=2|<math>{}_1^2\!\Omega_3^4</math>
+
|UNIQ0a986f19d8118a5a-code-0000059F-QINU||colspan=2|UNIQ0a986f19d8118a5a-math-000005A0-QINU
 
|-
 
|-
 
|rowspan="4"|Stacking
 
|rowspan="4"|Stacking
|<code>\overset{\alpha}{\omega}</code>||colspan="2"|<math>\overset{\alpha}{\omega}</math>
+
|UNIQ0a986f19d8118a5a-code-000005A1-QINU||colspan="2"|UNIQ0a986f19d8118a5a-math-000005A2-QINU
 
|-
 
|-
|<code>\underset{\alpha}{\omega}</code>||colspan="2"|<math>\underset{\alpha}{\omega}</math>
+
|UNIQ0a986f19d8118a5a-code-000005A3-QINU||colspan="2"|UNIQ0a986f19d8118a5a-math-000005A4-QINU
 
|-
 
|-
|<code>\overset{\alpha}{\underset{\gamma}{\omega}}</code>||colspan="2"|<math>\overset{\alpha}{\underset{\gamma}{\omega}}</math>
+
|UNIQ0a986f19d8118a5a-code-000005A5-QINU||colspan="2"|UNIQ0a986f19d8118a5a-math-000005A6-QINU
 
|-
 
|-
|<code>\stackrel{\alpha}{\omega}</code>||colspan="2"|<math>\stackrel{\alpha}{\omega}</math>
+
|UNIQ0a986f19d8118a5a-code-000005A7-QINU||colspan="2"|UNIQ0a986f19d8118a5a-math-000005A8-QINU
 
|-
 
|-
|Derivative (forced PNG)||<code>x', y'', f', f''\!</code>||&nbsp;||<math>x', y'', f', f''\!</math>
+
|Derivative (forced PNG)||UNIQ0a986f19d8118a5a-code-000005A9-QINU||&nbsp;||UNIQ0a986f19d8118a5a-math-000005AA-QINU
 
|-
 
|-
|Derivative (f in italics may overlap primes in HTML)||<code>x', y'', f', f''</code>||<math>x', y'', f', f''</math>||<math>x', y'', f', f''\!</math>
+
|Derivative (f in italics may overlap primes in HTML)||UNIQ0a986f19d8118a5a-code-000005AB-QINU||UNIQ0a986f19d8118a5a-math-000005AC-QINU||UNIQ0a986f19d8118a5a-math-000005AD-QINU
 
|-
 
|-
|Derivative (HTML-yanlış)||<code>x^\prime, y^{\prime\prime}</code>||<math>x^\prime, y^{\prime\prime}</math>||<math>x^\prime, y^{\prime\prime}\,\!</math>
+
|Derivative (HTML-yanlış)||UNIQ0a986f19d8118a5a-code-000005AE-QINU||UNIQ0a986f19d8118a5a-math-000005AF-QINU||UNIQ0a986f19d8118a5a-math-000005B0-QINU
 
|-
 
|-
|Derivative (PNG-yanlış)||<code>x\prime, y\prime\prime</code>||<math>x\prime, y\prime\prime</math>||<math>x\prime, y\prime\prime\,\!</math>
+
|Derivative (PNG-yanlış)||UNIQ0a986f19d8118a5a-code-000005B1-QINU||UNIQ0a986f19d8118a5a-math-000005B2-QINU||UNIQ0a986f19d8118a5a-math-000005B3-QINU
 
|-
 
|-
|Derivative dots||<code>\dot{x}, \ddot{x}</code>||colspan=2|<math>\dot{x}, \ddot{x}</math>
+
|Derivative dots||UNIQ0a986f19d8118a5a-code-000005B4-QINU||colspan=2|UNIQ0a986f19d8118a5a-math-000005B5-QINU
 
|-
 
|-
|rowspan="3"|Underlines, overlines, vectors||<code>\hat a \ \bar b \ \vec c</code>||colspan=2|<math>\hat a \ \bar b \ \vec c</math>
+
|rowspan="3"|Underlines, overlines, vectors||UNIQ0a986f19d8118a5a-code-000005B6-QINU||colspan=2|UNIQ0a986f19d8118a5a-math-000005B7-QINU
 
|-
 
|-
|<code>\overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f}</code>||colspan=2|<math>\overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f}</math>
+
|UNIQ0a986f19d8118a5a-code-000005B8-QINU||colspan=2|UNIQ0a986f19d8118a5a-math-000005B9-QINU
 
|-
 
|-
|<code>\overline{g h i} \ \underline{j k l}</code>||colspan=2|<math>\overline{g h i} \ \underline{j k l}</math>
+
|UNIQ0a986f19d8118a5a-code-000005BA-QINU||colspan=2|UNIQ0a986f19d8118a5a-math-000005BB-QINU
 
|-
 
|-
|Arrows||<code> A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C</code>||colspan=2|<math> A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C</math>
+
|Arrows||UNIQ0a986f19d8118a5a-code-000005BC-QINU||colspan=2|UNIQ0a986f19d8118a5a-math-000005BD-QINU
 
|-
 
|-
|Overbraces||<code>\overbrace{ 1+2+\cdots+100 }^{5050}</code>||colspan=2|<math>\overbrace{ 1+2+\cdots+100 }^{5050}</math>
+
|Overbraces||UNIQ0a986f19d8118a5a-code-000005BE-QINU||colspan=2|UNIQ0a986f19d8118a5a-math-000005BF-QINU
 
|-
 
|-
|Underbraces||<code>\underbrace{ a+b+\cdots+z }_{26}</code>||colspan=2|<math>\underbrace{ a+b+\cdots+z }_{26}</math>
+
|Underbraces||UNIQ0a986f19d8118a5a-code-000005C0-QINU||colspan=2|UNIQ0a986f19d8118a5a-math-000005C1-QINU
 
|-
 
|-
|Sum||<code>\sum_{k=1}^N k^2</code>||colspan=2|<math>\sum_{k=1}^N k^2</math>
+
|Sum||UNIQ0a986f19d8118a5a-code-000005C2-QINU||colspan=2|UNIQ0a986f19d8118a5a-math-000005C3-QINU
 
|-
 
|-
|Sum (force&nbsp;<code>\textstyle</code>)||<code>\textstyle \sum_{k=1}^N k^2 </code>||colspan=2|<math>\textstyle \sum_{k=1}^N k^2</math>
+
|Sum (force&nbsp;UNIQ0a986f19d8118a5a-code-000005C4-QINU)||UNIQ0a986f19d8118a5a-code-000005C5-QINU||colspan=2|UNIQ0a986f19d8118a5a-math-000005C6-QINU
 
|-
 
|-
|Product||<code>\prod_{i=1}^N x_i</code>||colspan=2|<math>\prod_{i=1}^N x_i</math>
+
|Product||UNIQ0a986f19d8118a5a-code-000005C7-QINU||colspan=2|UNIQ0a986f19d8118a5a-math-000005C8-QINU
 
|-
 
|-
|Product (force&nbsp;<code>\textstyle</code>)||<code>\textstyle \prod_{i=1}^N x_i</code>||colspan=2|<math>\textstyle \prod_{i=1}^N x_i</math>
+
|Product (force&nbsp;UNIQ0a986f19d8118a5a-code-000005C9-QINU)||UNIQ0a986f19d8118a5a-code-000005CA-QINU||colspan=2|UNIQ0a986f19d8118a5a-math-000005CB-QINU
 
|-
 
|-
|Coproduct||<code>\coprod_{i=1}^N x_i</code>||colspan=2|<math>\coprod_{i=1}^N x_i</math>
+
|Coproduct||UNIQ0a986f19d8118a5a-code-000005CC-QINU||colspan=2|UNIQ0a986f19d8118a5a-math-000005CD-QINU
 
|-
 
|-
|Coproduct (force&nbsp;<code>\textstyle</code>)||<code>\textstyle \coprod_{i=1}^N x_i</code>||colspan=2|<math>\textstyle \coprod_{i=1}^N x_i</math>
+
|Coproduct (force&nbsp;UNIQ0a986f19d8118a5a-code-000005CE-QINU)||UNIQ0a986f19d8118a5a-code-000005CF-QINU||colspan=2|UNIQ0a986f19d8118a5a-math-000005D0-QINU
 
|-
 
|-
|Limit||<code>\lim_{n \to \infty}x_n</code>||colspan=2|<math>\lim_{n \to \infty}x_n</math>
+
|Limit||UNIQ0a986f19d8118a5a-code-000005D1-QINU||colspan=2|UNIQ0a986f19d8118a5a-math-000005D2-QINU
 
|-
 
|-
|Limit (force&nbsp;<code>\textstyle</code>)||<code>\textstyle \lim_{n \to \infty}x_n</code>||colspan=2|<math>\textstyle \lim_{n \to \infty}x_n</math>
+
|Limit (force&nbsp;UNIQ0a986f19d8118a5a-code-000005D3-QINU)||UNIQ0a986f19d8118a5a-code-000005D4-QINU||colspan=2|UNIQ0a986f19d8118a5a-math-000005D5-QINU
 
|-
 
|-
|Integral||<code>\int_{-N}^{N} e^x\, dx</code>||colspan=2|<math>\int_{-N}^{N} e^x\, dx</math>
+
|Integral||UNIQ0a986f19d8118a5a-code-000005D6-QINU||colspan=2|UNIQ0a986f19d8118a5a-math-000005D7-QINU
 
|-
 
|-
|İntegral (force&nbsp;<code>\textstyle</code>)||<code>\textstyle \int_{-N}^{N} e^x\, dx</code>||colspan=2|<math>\textstyle \int_{-N}^{N} e^x\, dx</math>
+
|İntegral (force&nbsp;UNIQ0a986f19d8118a5a-code-000005D8-QINU)||UNIQ0a986f19d8118a5a-code-000005D9-QINU||colspan=2|UNIQ0a986f19d8118a5a-math-000005DA-QINU
 
|-
 
|-
|Çift katlı integral||<code>\iint_{D}^{W} \, dx\,dy</code>||colspan=2|<math>\iint_{D}^{W} \, dx\,dy</math>
+
|Çift katlı integral||UNIQ0a986f19d8118a5a-code-000005DB-QINU||colspan=2|UNIQ0a986f19d8118a5a-math-000005DC-QINU
 
|-
 
|-
|Üç katlı integral||<code>\iiint_{E}^{V} \, dx\,dy\,dz</code>||colspan=2|<math>\iiint_{E}^{V} \, dx\,dy\,dz</math>
+
|Üç katlı integral||UNIQ0a986f19d8118a5a-code-000005DD-QINU||colspan=2|UNIQ0a986f19d8118a5a-math-000005DE-QINU
 
|-
 
|-
|Dört katlı integral||<code>\iiiint_{F}^{U} \, dx\,dy\,dz\,dt</code>||colspan=2|<math>\iiiint_{F}^{U} \, dx\,dy\,dz\,dt</math>
+
|Dört katlı integral||UNIQ0a986f19d8118a5a-code-000005DF-QINU||colspan=2|UNIQ0a986f19d8118a5a-math-000005E0-QINU
 
|-
 
|-
|Path integral||<code>\oint_{C} x^3\, dx + 4y^2\, dy</code>||colspan=2|<math>\oint_{C} x^3\, dx + 4y^2\, dy</math>
+
|Path integral||UNIQ0a986f19d8118a5a-code-000005E1-QINU||colspan=2|UNIQ0a986f19d8118a5a-math-000005E2-QINU
 
|-
 
|-
|Intersections||<code>\bigcap_1^{n} p</code>||colspan=2|<math>\bigcap_1^{n} p</math>
+
|Intersections||UNIQ0a986f19d8118a5a-code-000005E3-QINU||colspan=2|UNIQ0a986f19d8118a5a-math-000005E4-QINU
 
|-
 
|-
|Unions||<code>\bigcup_1^{k} p</code>||colspan=2|<math>\bigcup_1^{k} p</math>
+
|Unions||UNIQ0a986f19d8118a5a-code-000005E5-QINU||colspan=2|UNIQ0a986f19d8118a5a-math-000005E6-QINU
 
|}
 
|}
  
384. satır: 379. satır:
 
<tr>
 
<tr>
 
<td>Fractions</td>
 
<td>Fractions</td>
<td><code>\frac{2}{4}=0.5</code></td>
+
<td>UNIQ0a986f19d8118a5a-code-000005E7-QINU</td>
<td><math>\frac{2}{4}=0.5</math></td>
+
<td>UNIQ0a986f19d8118a5a-math-000005E8-QINU</td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>Small Fractions</td>
 
<td>Small Fractions</td>
<td><code>\tfrac{2}{4} = 0.5</code></td>
+
<td>UNIQ0a986f19d8118a5a-code-000005E9-QINU</td>
<td><math>\tfrac{2}{4} = 0.5</math></td>
+
<td>UNIQ0a986f19d8118a5a-math-000005EA-QINU</td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>Large (normal) Fractions</td>
 
<td>Large (normal) Fractions</td>
<td><code>\dfrac{2}{4} = 0.5</code></td>
+
<td>UNIQ0a986f19d8118a5a-code-000005EB-QINU</td>
<td><math>\dfrac{2}{4} = 0.5</math></td>
+
<td>UNIQ0a986f19d8118a5a-math-000005EC-QINU</td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>Large (nestled) Fractions</td>
 
<td>Large (nestled) Fractions</td>
<td><code>\cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a</code></td>
+
<td>UNIQ0a986f19d8118a5a-code-000005ED-QINU</td>
<td><math>\cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a</math></td>
+
<td>UNIQ0a986f19d8118a5a-math-000005EE-QINU</td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>Binomial coefficients</td>
 
<td>Binomial coefficients</td>
<td><code>\binom{n}{k}</code></td>
+
<td>UNIQ0a986f19d8118a5a-code-000005EF-QINU</td>
<td><math>\binom{n}{k}</math></td>
+
<td>UNIQ0a986f19d8118a5a-math-000005F0-QINU</td>
 
</tr>
 
</tr>
  
415. satır: 410. satır:
 
<tr>
 
<tr>
 
<td>Small Binomial coefficients</td>
 
<td>Small Binomial coefficients</td>
<td><code>\tbinom{n}{k}</code></td>
+
<td>UNIQ0a986f19d8118a5a-code-000005F1-QINU</td>
<td><math>\tbinom{n}{k}</math></td>
+
<td>UNIQ0a986f19d8118a5a-math-000005F2-QINU</td>
 
</tr>
 
</tr>
  
422. satır: 417. satır:
 
<tr>
 
<tr>
 
<td>Large (normal) Binomial coefficients</td>
 
<td>Large (normal) Binomial coefficients</td>
<td><code>\dbinom{n}{k}</code></td>
+
<td>UNIQ0a986f19d8118a5a-code-000005F3-QINU</td>
<td><math>\dbinom{n}{k}</math></td>
+
<td>UNIQ0a986f19d8118a5a-math-000005F4-QINU</td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td rowspan="7">Matrices</td>
 
<td rowspan="7">Matrices</td>
<td><pre>\begin{matrix}
+
<td>UNIQ0a986f19d8118a5a-pre-000005F5-QINU</td>
  x & y \\
+
<td>UNIQ0a986f19d8118a5a-math-000005F6-QINU</td>
  z & v
+
\end{matrix}</pre></td>
+
<td><math>\begin{matrix} x & y \\ z & v
+
\end{matrix}</math></td>
+
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
<td><pre>\begin{vmatrix}
+
<td>UNIQ0a986f19d8118a5a-pre-000005F7-QINU</td>
  x & y \\
+
<td>UNIQ0a986f19d8118a5a-math-000005F8-QINU</td>
  z & v
+
\end{vmatrix}</pre></td>
+
<td><math>\begin{vmatrix} x & y \\ z & v
+
\end{vmatrix}</math></td>
+
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
<td><pre>\begin{Vmatrix}
+
<td>UNIQ0a986f19d8118a5a-pre-000005F9-QINU</td>
  x & y \\
+
<td>UNIQ0a986f19d8118a5a-math-000005FA-QINU</td>
  z & v
+
\end{Vmatrix}</pre></td>
+
<td><math>\begin{Vmatrix} x & y \\ z & v
+
\end{Vmatrix}</math></td>
+
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
<td><pre>\begin{bmatrix}
+
<td>UNIQ0a986f19d8118a5a-pre-000005FB-QINU</td>
  0      & \cdots & 0      \\
+
<td>UNIQ0a986f19d8118a5a-math-000005FC-QINU</td>
  \vdots & \ddots & \vdots \\
+
  0      & \cdots & 0
+
\end{bmatrix}</pre></td>
+
<td><math>\begin{bmatrix} 0 & \cdots & 0 \\ \vdots
+
& \ddots & \vdots \\ 0 & \cdots &
+
0\end{bmatrix} </math></td>
+
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
<td><pre>\begin{Bmatrix}
+
<td>UNIQ0a986f19d8118a5a-pre-000005FD-QINU</td>
  x & y \\
+
<td>UNIQ0a986f19d8118a5a-math-000005FE-QINU</td>
  z & v
+
\end{Bmatrix}</pre></td>
+
<td><math>\begin{Bmatrix} x & y \\ z & v
+
\end{Bmatrix}</math></td>
+
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
<td><pre>\begin{pmatrix}
+
<td>UNIQ0a986f19d8118a5a-pre-000005FF-QINU</td>
  x & y \\
+
<td>UNIQ0a986f19d8118a5a-math-00000600-QINU</td>
  z & v
+
\end{pmatrix}</pre></td>
+
<td><math>\begin{pmatrix} x & y \\ z & v
+
\end{pmatrix}</math></td>
+
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
<td><pre>
+
<td>UNIQ0a986f19d8118a5a-pre-00000601-QINU</td>
\bigl( \begin{smallmatrix}
+
<td>UNIQ0a986f19d8118a5a-math-00000602-QINU</td>
  a&b\\ c&d
+
\end{smallmatrix} \bigr)
+
</pre></td>
+
<td><math>
+
\bigl( \begin{smallmatrix}
+
  a&b\\ c&d
+
\end{smallmatrix} \bigr)
+
</math></td>
+
 
</tr>
 
</tr>
  
500. satır: 461. satır:
 
<tr>
 
<tr>
 
<td>Case distinctions</td>
 
<td>Case distinctions</td>
<td><pre>
+
<td>UNIQ0a986f19d8118a5a-pre-00000603-QINU</td>
f(n) =
+
<td>UNIQ0a986f19d8118a5a-math-00000604-QINU</td>
\begin{cases}
+
  n/2,  & \mbox{if }n\mbox{ is even} \\
+
  3n+1, & \mbox{if }n\mbox{ is odd}
+
\end{cases}</pre></td>
+
<td><math>f(n) =
+
\begin{cases}
+
  n/2,  & \mbox{if }n\mbox{ is even} \\
+
  3n+1, & \mbox{if }n\mbox{ is odd}
+
\end{cases} </math></td>
+
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td rowspan="2">Multiline equations</td>
 
<td rowspan="2">Multiline equations</td>
<td><pre>
+
<td>UNIQ0a986f19d8118a5a-pre-00000605-QINU</td>
\begin{align}
+
<td>UNIQ0a986f19d8118a5a-math-00000606-QINU</td>
f(x) & = (a+b)^2 \\
+
      & = a^2+2ab+b^2 \\
+
\end{align}
+
</pre></td>
+
<td><math>
+
\begin{align}
+
f(x) & = (a+b)^2 \\
+
      & = a^2+2ab+b^2 \\
+
\end{align}
+
</math></td>
+
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
<td><pre>
+
<td>UNIQ0a986f19d8118a5a-pre-00000607-QINU</td>
\begin{alignat}{2}
+
<td>UNIQ0a986f19d8118a5a-math-00000608-QINU</td>
f(x) & = (a-b)^2 \\
+
      & = a^2-2ab+b^2 \\
+
\end{alignat}
+
</pre></td>
+
<td><math>
+
\begin{alignat}{2}
+
f(x) & = (a-b)^2 \\
+
      & = a^2-2ab+b^2 \\
+
\end{alignat}
+
</math></td>
+
 
</tr>
 
</tr>
 
<tr>
 
<tr>
 
<td>Multiline equations <small>(must define number of colums used ({lcr}) <small>(should not be used unless needed)</small></small></td>
 
<td>Multiline equations <small>(must define number of colums used ({lcr}) <small>(should not be used unless needed)</small></small></td>
<td><pre>
+
<td>UNIQ0a986f19d8118a5a-pre-00000609-QINU</td>
\begin{array}{lcl}
+
<td>UNIQ0a986f19d8118a5a-math-0000060A-QINU</td>
  z        & = & a \\
+
  f(x,y,z) & = & x + y + z 
+
\end{array}</pre></td>
+
<td><math>\begin{array}{lcl}
+
  z        & = & a \\
+
  f(x,y,z) & = & x + y + z 
+
\end{array}</math></td>
+
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>Multiline equations (more)</td>
 
<td>Multiline equations (more)</td>
<td><pre>
+
<td>UNIQ0a986f19d8118a5a-pre-0000060B-QINU</td>
\begin{array}{lcr}
+
<td>UNIQ0a986f19d8118a5a-math-0000060C-QINU</td>
  z        & = & a \\
+
  f(x,y,z) & = & x + y + z   
+
\end{array}</pre></td>
+
<td><math>\begin{array}{lcr}
+
  z        & = & a \\
+
  f(x,y,z) & = & x + y + z   
+
\end{array}</math></td>
+
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>Breaking up a long expression so that it wraps when necessary</td>
 
<td>Breaking up a long expression so that it wraps when necessary</td>
<td><pre>
+
<td>UNIQ0a986f19d8118a5a-pre-0000060D-QINU
<nowiki>
+
<math>f(x) \,\!</math>
+
<math>= \sum_{n=0}^\infty a_n x^n </math>
+
<math>= a_0+a_1x+a_2x^2+\cdots</math>
+
</nowiki>
+
</pre>
+
 
</td>
 
</td>
 
<td>
 
<td>
<math>f(x) \,\!</math><math>= \sum_{n=0}^\infty a_n x^n </math><math>= a_0 +a_1x+a_2x^2+\cdots</math>
+
UNIQ0a986f19d8118a5a-math-0000060E-QINUUNIQ0a986f19d8118a5a-math-0000060F-QINUUNIQ0a986f19d8118a5a-math-00000610-QINU
 
</td>
 
</td>
 
</tr>
 
</tr>
586. satır: 498. satır:
 
<tr>
 
<tr>
 
<td>Simultaneous equations</td>
 
<td>Simultaneous equations</td>
<td><pre>\begin{cases}
+
<td>UNIQ0a986f19d8118a5a-pre-00000611-QINU</td>
    3x + 5y +  z \\
+
<td>UNIQ0a986f19d8118a5a-math-00000612-QINU</td>
    7x - 2y + 4z \\
+
  -6x + 3y + 2z
+
\end{cases}</pre></td>
+
<td><math>\begin{cases} 3x + 5y + z \\ 7x - 2y + 4z \\ -6x + 3y + 2z \end{cases}</math></td>
+
 
</tr>
 
</tr>
  
601. satır: 509. satır:
 
! colspan="2" | Greek alphabet
 
! colspan="2" | Greek alphabet
 
|-
 
|-
|<code><nowiki>\Alpha \Beta \Gamma \Delta \Epsilon \Zeta</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-00000613-QINU
|<math>\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000614-QINU
 
|-
 
|-
|<code><nowiki>\Eta \Theta \Iota \Kappa \Lambda \Mu</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-00000615-QINU
|<math>\Eta \Theta \Iota \Kappa \Lambda \Mu \,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000616-QINU
 
|-
 
|-
|<code><nowiki>\Nu \Xi \Pi \Rho \Sigma \Tau</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-00000617-QINU
|<math>\Nu \Xi \Pi \Rho \Sigma \Tau\,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000618-QINU
 
|-
 
|-
|<code><nowiki>\Upsilon \Phi \Chi \Psi \Omega</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-00000619-QINU
|<math>\Upsilon \Phi \Chi \Psi \Omega \,\!</math>
+
|UNIQ0a986f19d8118a5a-math-0000061A-QINU
 
|-
 
|-
|<code><nowiki>\alpha \beta \gamma \delta \epsilon \zeta</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-0000061B-QINU
|<math>\alpha \beta \gamma \delta \epsilon \zeta \,\!</math>
+
|UNIQ0a986f19d8118a5a-math-0000061C-QINU
 
|-
 
|-
|<code><nowiki>\eta \theta \iota \kappa \lambda \mu</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-0000061D-QINU
|<math>\eta \theta \iota \kappa \lambda \mu \,\!</math>
+
|UNIQ0a986f19d8118a5a-math-0000061E-QINU
 
|-
 
|-
|<code><nowiki>\nu \xi \pi \rho \sigma \tau</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-0000061F-QINU
|<math>\nu \xi \pi \rho \sigma \tau \,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000620-QINU
 
|-
 
|-
|<code><nowiki>\upsilon \phi \chi \psi \omega</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-00000621-QINU
|<math>\upsilon \phi \chi \psi \omega \,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000622-QINU
 
|-
 
|-
|<code><nowiki>\varepsilon \digamma \vartheta \varkappa</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-00000623-QINU
|<math>\varepsilon \digamma \vartheta \varkappa \,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000624-QINU
 
|-
 
|-
|<code><nowiki>\varpi \varrho \varsigma \varphi</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-00000625-QINU
|<math>\varpi \varrho \varsigma \varphi\,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000626-QINU
 
|-
 
|-
 
! colspan="2" | Blackboard Bold/Scripts
 
! colspan="2" | Blackboard Bold/Scripts
 
|-
 
|-
|<code><nowiki>\mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G}</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-00000627-QINU
|<math>\mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G} \,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000628-QINU
 
|-
 
|-
|<code><nowiki>\mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M}</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-00000629-QINU
|<math>\mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M} \,\!</math>
+
|UNIQ0a986f19d8118a5a-math-0000062A-QINU
 
|-
 
|-
|<code><nowiki>\mathbb{N} \mathbb{O} \mathbb{P} \mathbb{Q} \mathbb{R} \mathbb{S} \mathbb{T}</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-0000062B-QINU
|<math>\mathbb{N} \mathbb{O} \mathbb{P} \mathbb{Q} \mathbb{R} \mathbb{S} \mathbb{T} \,\!</math>
+
|UNIQ0a986f19d8118a5a-math-0000062C-QINU
 
|-
 
|-
|<code><nowiki>\mathbb{U} \mathbb{V} \mathbb{W} \mathbb{X} \mathbb{Y} \mathbb{Z}</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-0000062D-QINU
|<math>\mathbb{U} \mathbb{V} \mathbb{W} \mathbb{X} \mathbb{Y} \mathbb{Z}\,\!</math>
+
|UNIQ0a986f19d8118a5a-math-0000062E-QINU
 
|-
 
|-
 
! colspan="2" | boldface (vectors)
 
! colspan="2" | boldface (vectors)
 
|-
 
|-
|<code><nowiki>\mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G}</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-0000062F-QINU
|<math>\mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G} \,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000630-QINU
 
|-
 
|-
|<code><nowiki>\mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M}</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-00000631-QINU
|<math>\mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M} \,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000632-QINU
 
|-
 
|-
|<code><nowiki>\mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T}</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-00000633-QINU
|<math>\mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T} \,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000634-QINU
 
|-
 
|-
|<code><nowiki>\mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z}</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-00000635-QINU
|<math>\mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z} \,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000636-QINU
 
|-
 
|-
|<code><nowiki>\mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g}</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-00000637-QINU
|<math>\mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g} \,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000638-QINU
 
|-
 
|-
|<code><nowiki>\mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m}</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-00000639-QINU
|<math>\mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m} \,\!</math>
+
|UNIQ0a986f19d8118a5a-math-0000063A-QINU
 
|-
 
|-
|<code><nowiki>\mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t}</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-0000063B-QINU
|<math>\mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t} \,\!</math>
+
|UNIQ0a986f19d8118a5a-math-0000063C-QINU
 
|-
 
|-
|<code><nowiki>\mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z}</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-0000063D-QINU
|<math>\mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z} \,\!</math>
+
|UNIQ0a986f19d8118a5a-math-0000063E-QINU
 
|-
 
|-
|<code><nowiki>\mathbf{0} \mathbf{1} \mathbf{2} \mathbf{3} \mathbf{4}</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-0000063F-QINU
|<math>\mathbf{0} \mathbf{1} \mathbf{2} \mathbf{3} \mathbf{4} \,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000640-QINU
 
|-
 
|-
|<code><nowiki>\mathbf{5} \mathbf{6} \mathbf{7} \mathbf{8} \mathbf{9}</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-00000641-QINU
|<math>\mathbf{5} \mathbf{6} \mathbf{7} \mathbf{8} \mathbf{9}\,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000642-QINU
 
|-
 
|-
 
! colspan="2" | Boldface (greek)
 
! colspan="2" | Boldface (greek)
 
|-
 
|-
|<code><nowiki>\boldsymbol{\Alpha} \boldsymbol{\Beta} \boldsymbol{\Gamma} \boldsymbol{\Delta} \boldsymbol{\Epsilon} \boldsymbol{\Zeta}</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-00000643-QINU
|<math>\boldsymbol{\Alpha} \boldsymbol{\Beta} \boldsymbol{\Gamma} \boldsymbol{\Delta} \boldsymbol{\Epsilon} \boldsymbol{\Zeta} \,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000644-QINU
 
|-
 
|-
|<code><nowiki>\boldsymbol{\Eta} \boldsymbol{\Theta} \boldsymbol{\Iota} \boldsymbol{\Kappa} \boldsymbol{\Lambda} \boldsymbol{\Mu}</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-00000645-QINU
|<math>\boldsymbol{\Eta} \boldsymbol{\Theta} \boldsymbol{\Iota} \boldsymbol{\Kappa} \boldsymbol{\Lambda} \boldsymbol{\Mu}\,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000646-QINU
 
|-
 
|-
|<code><nowiki>\boldsymbol{\Nu} \boldsymbol{\Xi} \boldsymbol{\Pi} \boldsymbol{\Rho} \boldsymbol{\Sigma} \boldsymbol{\Tau}</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-00000647-QINU
|<math>\boldsymbol{\Nu} \boldsymbol{\Xi} \boldsymbol{\Pi} \boldsymbol{\Rho} \boldsymbol{\Sigma} \boldsymbol{\Tau}\,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000648-QINU
 
|-
 
|-
|<code><nowiki>\boldsymbol{\Upsilon} \boldsymbol{\Phi} \boldsymbol{\Chi} \boldsymbol{\Psi} \boldsymbol{\Omega}</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-00000649-QINU
|<math>\boldsymbol{\Upsilon} \boldsymbol{\Phi} \boldsymbol{\Chi} \boldsymbol{\Psi} \boldsymbol{\Omega}\,\!</math>
+
|UNIQ0a986f19d8118a5a-math-0000064A-QINU
 
|-
 
|-
|<code><nowiki>\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\epsilon} \boldsymbol{\zeta}</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-0000064B-QINU
|<math>\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\epsilon} \boldsymbol{\zeta}\,\!</math>
+
|UNIQ0a986f19d8118a5a-math-0000064C-QINU
 
|-
 
|-
|<code><nowiki>\boldsymbol{\eta} \boldsymbol{\theta} \boldsymbol{\iota} \boldsymbol{\kappa} \boldsymbol{\lambda} \boldsymbol{\mu}</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-0000064D-QINU
|<math>\boldsymbol{\eta} \boldsymbol{\theta} \boldsymbol{\iota} \boldsymbol{\kappa} \boldsymbol{\lambda} \boldsymbol{\mu}\,\!</math>
+
|UNIQ0a986f19d8118a5a-math-0000064E-QINU
 
|-
 
|-
|<code><nowiki>\boldsymbol{\nu} \boldsymbol{\xi} \boldsymbol{\pi} \boldsymbol{\rho} \boldsymbol{\sigma} \boldsymbol{\tau}</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-0000064F-QINU
|<math>\boldsymbol{\nu} \boldsymbol{\xi} \boldsymbol{\pi} \boldsymbol{\rho} \boldsymbol{\sigma} \boldsymbol{\tau}\,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000650-QINU
 
|-
 
|-
|<code><nowiki>\boldsymbol{\upsilon} \boldsymbol{\phi} \boldsymbol{\chi} \boldsymbol{\psi} \boldsymbol{\omega}</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-00000651-QINU
|<math>\boldsymbol{\upsilon} \boldsymbol{\phi} \boldsymbol{\chi} \boldsymbol{\psi} \boldsymbol{\omega}\,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000652-QINU
 
|-
 
|-
|<code><nowiki>\boldsymbol{\varepsilon} \boldsymbol{\digamma} \boldsymbol{\vartheta} \boldsymbol{\varkappa}</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-00000653-QINU
|<math>\boldsymbol{\varepsilon} \boldsymbol{\digamma} \boldsymbol{\vartheta} \boldsymbol{\varkappa} \,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000654-QINU
 
|-
 
|-
|<code><nowiki>\boldsymbol{\varpi} \boldsymbol{\varrho} \boldsymbol{\varsigma} \boldsymbol{\varphi}</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-00000655-QINU
|<math>\boldsymbol{\varpi} \boldsymbol{\varrho} \boldsymbol{\varsigma} \boldsymbol{\varphi}\,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000656-QINU
 
|-
 
|-
 
! colspan="2" | Italics
 
! colspan="2" | Italics
 
|-
 
|-
|<code><nowiki>\mathit{A} \mathit{B} \mathit{C} \mathit{D} \mathit{E} \mathit{F} \mathit{G}</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-00000657-QINU
|<math>\mathit{A} \mathit{B} \mathit{C} \mathit{D} \mathit{E} \mathit{F} \mathit{G} \,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000658-QINU
 
|-
 
|-
|<code><nowiki>\mathit{H} \mathit{I} \mathit{J} \mathit{K} \mathit{L} \mathit{M}</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-00000659-QINU
|<math>\mathit{H} \mathit{I} \mathit{J} \mathit{K} \mathit{L} \mathit{M} \,\!</math>
+
|UNIQ0a986f19d8118a5a-math-0000065A-QINU
 
|-
 
|-
|<code><nowiki>\mathit{N} \mathit{O} \mathit{P} \mathit{Q} \mathit{R} \mathit{S} \mathit{T}</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-0000065B-QINU
|<math>\mathit{N} \mathit{O} \mathit{P} \mathit{Q} \mathit{R} \mathit{S} \mathit{T} \,\!</math>
+
|UNIQ0a986f19d8118a5a-math-0000065C-QINU
 
|-
 
|-
|<code><nowiki>\mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z}</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-0000065D-QINU
|<math>\mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z} \,\!</math>
+
|UNIQ0a986f19d8118a5a-math-0000065E-QINU
 
|-
 
|-
|<code><nowiki>\mathit{a} \mathit{b} \mathit{c} \mathit{d} \mathit{e} \mathit{f} \mathit{g}</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-0000065F-QINU
|<math>\mathit{a} \mathit{b} \mathit{c} \mathit{d} \mathit{e} \mathit{f} \mathit{g} \,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000660-QINU
 
|-
 
|-
|<code><nowiki>\mathit{h} \mathit{i} \mathit{j} \mathit{k} \mathit{l} \mathit{m}</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-00000661-QINU
|<math>\mathit{h} \mathit{i} \mathit{j} \mathit{k} \mathit{l} \mathit{m} \,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000662-QINU
 
|-
 
|-
|<code><nowiki>\mathit{n} \mathit{o} \mathit{p} \mathit{q} \mathit{r} \mathit{s} \mathit{t}</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-00000663-QINU
|<math>\mathit{n} \mathit{o} \mathit{p} \mathit{q} \mathit{r} \mathit{s} \mathit{t} \,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000664-QINU
 
|-
 
|-
|<code><nowiki>\mathit{u} \mathit{v} \mathit{w} \mathit{x} \mathit{y} \mathit{z}</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-00000665-QINU
|<math>\mathit{u} \mathit{v} \mathit{w} \mathit{x} \mathit{y} \mathit{z} \,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000666-QINU
 
|-
 
|-
|<code><nowiki>\mathit{0} \mathit{1} \mathit{2} \mathit{3} \mathit{4}</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-00000667-QINU
|<math>\mathit{0} \mathit{1} \mathit{2} \mathit{3} \mathit{4} \,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000668-QINU
 
|-
 
|-
|<code><nowiki>\mathit{5} \mathit{6} \mathit{7} \mathit{8} \mathit{9}</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-00000669-QINU
|<math>\mathit{5} \mathit{6} \mathit{7} \mathit{8} \mathit{9}\,\!</math>
+
|UNIQ0a986f19d8118a5a-math-0000066A-QINU
 
|-
 
|-
 
! colspan="2" | Roman typeface
 
! colspan="2" | Roman typeface
 
|-
 
|-
|<code><nowiki>\mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G}</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-0000066B-QINU
|<math>\mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G} \,\!</math>
+
|UNIQ0a986f19d8118a5a-math-0000066C-QINU
 
|-
 
|-
|<code><nowiki>\mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M}</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-0000066D-QINU
|<math>\mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M} \,\!</math>
+
|UNIQ0a986f19d8118a5a-math-0000066E-QINU
 
|-
 
|-
|<code><nowiki>\mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T}</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-0000066F-QINU
|<math>\mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T} \,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000670-QINU
 
|-
 
|-
|<code><nowiki>\mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z}</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-00000671-QINU
|<math>\mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z} \,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000672-QINU
 
|-
 
|-
|<code><nowiki>\mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g}</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-00000673-QINU
|<math>\mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g}\,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000674-QINU
 
|-
 
|-
|<code><nowiki>\mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m}</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-00000675-QINU
|<math>\mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m} \,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000676-QINU
 
|-
 
|-
|<code><nowiki>\mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t}</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-00000677-QINU
|<math>\mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t} \,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000678-QINU
 
|-
 
|-
|<code><nowiki>\mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z}</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-00000679-QINU
|<math>\mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z} \,\!</math>
+
|UNIQ0a986f19d8118a5a-math-0000067A-QINU
 
|-
 
|-
|<code><nowiki>\mathrm{0} \mathrm{1} \mathrm{2} \mathrm{3} \mathrm{4}</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-0000067B-QINU
|<math>\mathrm{0} \mathrm{1} \mathrm{2} \mathrm{3} \mathrm{4} \,\!</math>
+
|UNIQ0a986f19d8118a5a-math-0000067C-QINU
 
|-
 
|-
|<code><nowiki>\mathrm{5} \mathrm{6} \mathrm{7} \mathrm{8} \mathrm{9}</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-0000067D-QINU
|<math>\mathrm{5} \mathrm{6} \mathrm{7} \mathrm{8} \mathrm{9}\,\!</math>
+
|UNIQ0a986f19d8118a5a-math-0000067E-QINU
 
|-
 
|-
 
! colspan="2" | Fraktur typeface
 
! colspan="2" | Fraktur typeface
 
|-
 
|-
|<code><nowiki>\mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G}</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-0000067F-QINU
|<math>\mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G} \,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000680-QINU
 
|-
 
|-
|<code><nowiki>\mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M}</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-00000681-QINU
|<math>\mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M} \,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000682-QINU
 
|-
 
|-
|<code><nowiki>\mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T}</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-00000683-QINU
|<math>\mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T} \,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000684-QINU
 
|-
 
|-
|<code><nowiki>\mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z}</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-00000685-QINU
|<math>\mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z} \,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000686-QINU
 
|-
 
|-
|<code><nowiki>\mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g}</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-00000687-QINU
|<math>\mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g} \,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000688-QINU
 
|-
 
|-
|<code><nowiki>\mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m}</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-00000689-QINU
|<math>\mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m} \,\!</math>
+
|UNIQ0a986f19d8118a5a-math-0000068A-QINU
 
|-
 
|-
|<code><nowiki>\mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t}</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-0000068B-QINU
|<math>\mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t} \,\!</math>
+
|UNIQ0a986f19d8118a5a-math-0000068C-QINU
 
|-
 
|-
|<code><nowiki>\mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z}</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-0000068D-QINU
|<math>\mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z} \,\!</math>
+
|UNIQ0a986f19d8118a5a-math-0000068E-QINU
 
|-
 
|-
|<code><nowiki>\mathfrak{0} \mathfrak{1} \mathfrak{2} \mathfrak{3} \mathfrak{4}</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-0000068F-QINU
|<math>\mathfrak{0} \mathfrak{1} \mathfrak{2} \mathfrak{3} \mathfrak{4} \,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000690-QINU
 
|-
 
|-
|<code><nowiki>\mathfrak{5} \mathfrak{6} \mathfrak{7} \mathfrak{8} \mathfrak{9}</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-00000691-QINU
|<math>\mathfrak{5} \mathfrak{6} \mathfrak{7} \mathfrak{8} \mathfrak{9}\,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000692-QINU
 
|-
 
|-
 
! colspan="2" | Calligraphy/Script
 
! colspan="2" | Calligraphy/Script
 
|-
 
|-
|<code><nowiki>\mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G}</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-00000693-QINU
|<math>\mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G} \,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000694-QINU
 
|-
 
|-
|<code><nowiki>\mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M}</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-00000695-QINU
|<math>\mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M} \,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000696-QINU
 
|-
 
|-
|<code><nowiki>\mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T}</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-00000697-QINU
|<math>\mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T} \,\!</math>
+
|UNIQ0a986f19d8118a5a-math-00000698-QINU
 
|-
 
|-
|<code><nowiki>\mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z}</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-00000699-QINU
|<math>\mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z}\,\!</math>
+
|UNIQ0a986f19d8118a5a-math-0000069A-QINU
 
|-
 
|-
 
! colspan="2" | Hebrew
 
! colspan="2" | Hebrew
 
|-
 
|-
|<code><nowiki>\aleph \beth \gimel \daleth</nowiki></code>
+
|UNIQ0a986f19d8118a5a-code-0000069B-QINU
|<math>\aleph \beth \gimel \daleth\,\!</math>
+
|UNIQ0a986f19d8118a5a-math-0000069C-QINU
 
|}
 
|}
  
836. satır: 744. satır:
 
<td>non-italicised characters</td>
 
<td>non-italicised characters</td>
 
<td>\mbox{abc}</td>
 
<td>\mbox{abc}</td>
<td><math>\mbox{abc}</math></td>
+
<td>UNIQ0a986f19d8118a5a-math-0000069D-QINU</td>
<td><math>\mbox{abc} \,\!</math></td>
+
<td>UNIQ0a986f19d8118a5a-math-0000069E-QINU</td>
 
</tr>
 
</tr>
  
843. satır: 751. satır:
 
<td>mixed italics (bad)</td>
 
<td>mixed italics (bad)</td>
 
<td>\mbox{if} n \mbox{is even}</td>
 
<td>\mbox{if} n \mbox{is even}</td>
<td><math>\mbox{if} n \mbox{is even}</math></td>
+
<td>UNIQ0a986f19d8118a5a-math-0000069F-QINU</td>
<td><math>\mbox{if} n \mbox{is even} \,\!</math></td>
+
<td>UNIQ0a986f19d8118a5a-math-000006A0-QINU</td>
 
</tr>
 
</tr>
  
850. satır: 758. satır:
 
<td>mixed italics (good)</td>
 
<td>mixed italics (good)</td>
 
<td>\mbox{if }n\mbox{ is even}</td>
 
<td>\mbox{if }n\mbox{ is even}</td>
<td><math>\mbox{if }n\mbox{ is even}</math></td>
+
<td>UNIQ0a986f19d8118a5a-math-000006A1-QINU</td>
<td><math>\mbox{if }n\mbox{ is even} \,\!</math></td>
+
<td>UNIQ0a986f19d8118a5a-math-000006A2-QINU</td>
 
</tr>
 
</tr>
  
857. satır: 765. satır:
 
<td>mixed italics (more legible: ~ is a non-breaking space, while "\ " forces a space)</td>
 
<td>mixed italics (more legible: ~ is a non-breaking space, while "\ " forces a space)</td>
 
<td>\mbox{if}~n\ \mbox{is even}</td>
 
<td>\mbox{if}~n\ \mbox{is even}</td>
<td><math>\mbox{if}~n\ \mbox{is even}</math></td>
+
<td>UNIQ0a986f19d8118a5a-math-000006A3-QINU</td>
<td><math>\mbox{if}~n\ \mbox{is even} \,\!</math></td>
+
<td>UNIQ0a986f19d8118a5a-math-000006A4-QINU</td>
 
</tr>
 
</tr>
  
875. satır: 783. satır:
 
<td>Bad</td>
 
<td>Bad</td>
 
<td>( \frac{1}{2} )</td>
 
<td>( \frac{1}{2} )</td>
<td><math>( \frac{1}{2} )</math></td>
+
<td>UNIQ0a986f19d8118a5a-math-000006A5-QINU</td>
 
</tr>
 
</tr>
  
881. satır: 789. satır:
 
<td>Good</td>
 
<td>Good</td>
 
<td>\left ( \frac{1}{2} \right )</td>
 
<td>\left ( \frac{1}{2} \right )</td>
<td><math>\left ( \frac{1}{2} \right )</math></td>
+
<td>UNIQ0a986f19d8118a5a-math-000006A6-QINU</td>
 
</tr>
 
</tr>
  
899. satır: 807. satır:
 
<td>Parentheses</td>
 
<td>Parentheses</td>
 
<td>\left ( \frac{a}{b} \right )</td>
 
<td>\left ( \frac{a}{b} \right )</td>
<td><math>\left ( \frac{a}{b} \right )</math></td>
+
<td>UNIQ0a986f19d8118a5a-math-000006A7-QINU</td>
 
</tr>
 
</tr>
  
905. satır: 813. satır:
 
<td>Brackets</td>
 
<td>Brackets</td>
 
<td>\left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack</td>
 
<td>\left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack</td>
<td><math>\left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack</math></td>
+
<td>UNIQ0a986f19d8118a5a-math-000006A8-QINU</td>
 
</tr>
 
</tr>
  
911. satır: 819. satır:
 
<td>Braces</td>
 
<td>Braces</td>
 
<td>\left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace</td>
 
<td>\left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace</td>
<td><math>\left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace</math></td>
+
<td>UNIQ0a986f19d8118a5a-math-000006A9-QINU</td>
 
</tr>
 
</tr>
  
917. satır: 825. satır:
 
<td>Angle brackets</td>
 
<td>Angle brackets</td>
 
<td>\left \langle \frac{a}{b} \right \rangle</td>
 
<td>\left \langle \frac{a}{b} \right \rangle</td>
<td><math>\left \langle \frac{a}{b} \right \rangle</math></td>
+
<td>UNIQ0a986f19d8118a5a-math-000006AA-QINU</td>
 
</tr>
 
</tr>
  
923. satır: 831. satır:
 
<td>Bars and double bars</td>
 
<td>Bars and double bars</td>
 
<td>\left | \frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \|</td>
 
<td>\left | \frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \|</td>
<td><math>\left | \frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \|</math></td>
+
<td>UNIQ0a986f19d8118a5a-math-000006AB-QINU</td>
 
</tr>
 
</tr>
  
929. satır: 837. satır:
 
<td>Floor and ceiling functions:</td>
 
<td>Floor and ceiling functions:</td>
 
<td>\left \lfloor \frac{a}{b} \right \rfloor \left \lceil \frac{c}{d} \right \rceil</td>
 
<td>\left \lfloor \frac{a}{b} \right \rfloor \left \lceil \frac{c}{d} \right \rceil</td>
<td><math>\left \lfloor \frac{a}{b} \right \rfloor \left \lceil \frac{c}{d} \right \rceil</math></td>
+
<td>UNIQ0a986f19d8118a5a-math-000006AC-QINU</td>
 
</tr>
 
</tr>
  
935. satır: 843. satır:
 
<td>Slashes and backslashes</td>
 
<td>Slashes and backslashes</td>
 
<td>\left / \frac{a}{b} \right \backslash</td>
 
<td>\left / \frac{a}{b} \right \backslash</td>
<td><math>\left / \frac{a}{b} \right \backslash</math></td>
+
<td>UNIQ0a986f19d8118a5a-math-000006AD-QINU</td>
 
</tr>
 
</tr>
  
941. satır: 849. satır:
 
<td>Up, down and up-down arrows</td>
 
<td>Up, down and up-down arrows</td>
 
<td>\left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow</td>
 
<td>\left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow</td>
<td><math>\left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow</math></td>
+
<td>UNIQ0a986f19d8118a5a-math-000006AE-QINU</td>
 
</tr>
 
</tr>
  
952. satır: 860. satır:
 
</td>
 
</td>
 
<td>
 
<td>
<math>\left [ 0,1 \right )</math><br/><math>\left \langle \psi \right |</math>
+
UNIQ0a986f19d8118a5a-math-000006AF-QINU<br/>UNIQ0a986f19d8118a5a-math-000006B0-QINU
 
</td>
 
</td>
 
</tr>
 
</tr>
959. satır: 867. satır:
 
<td>Use \left. and \right. if you don't<br/>want a delimiter to appear:</td>
 
<td>Use \left. and \right. if you don't<br/>want a delimiter to appear:</td>
 
<td>\left . \frac{A}{B} \right \} \to X</td>
 
<td>\left . \frac{A}{B} \right \} \to X</td>
<td><math>\left . \frac{A}{B} \right \} \to X</math></td>
+
<td>UNIQ0a986f19d8118a5a-math-000006B1-QINU</td>
 
</tr>
 
</tr>
  
966. satır: 874. satır:
 
<td>\big( \Big( \bigg( \Bigg( ... \Bigg] \bigg] \Big] \big]</td>
 
<td>\big( \Big( \bigg( \Bigg( ... \Bigg] \bigg] \Big] \big]</td>
 
<td colspan="2">
 
<td colspan="2">
<math>\big( \Big( \bigg( \Bigg( ... \Bigg] \bigg] \Big] \big]</math>
+
UNIQ0a986f19d8118a5a-math-000006B2-QINU
 
</td>
 
</td>
 
</tr>
 
</tr>
972. satır: 880. satır:
 
<td>\big\{ \Big\{ \bigg\{ \Bigg\{ ... \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle</td>
 
<td>\big\{ \Big\{ \bigg\{ \Bigg\{ ... \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle</td>
 
<td colspan="2">
 
<td colspan="2">
<math>\big\{ \Big\{ \bigg\{ \Bigg\{ ... \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle</math>
+
UNIQ0a986f19d8118a5a-math-000006B3-QINU
 
</td>
 
</td>
 
</tr>
 
</tr>
 
<tr>
 
<tr>
 
<td>\big\| \Big\| \bigg\| \Bigg\| ... \Bigg| \bigg| \Big| \big|</td>
 
<td>\big\| \Big\| \bigg\| \Bigg\| ... \Bigg| \bigg| \Big| \big|</td>
<td colspan="2"><math>\big\| \Big\| \bigg\| \Bigg\| ... \Bigg| \bigg| \Big| \big|</math></td>
+
<td colspan="2">UNIQ0a986f19d8118a5a-math-000006B4-QINU</td>
 
</tr>
 
</tr>
 
<tr>
 
<tr>
 
<td>\big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor ... \Bigg\rceil \bigg\rceil \Big\rceil \big\rceil</td>
 
<td>\big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor ... \Bigg\rceil \bigg\rceil \Big\rceil \big\rceil</td>
 
<td colspan="2">
 
<td colspan="2">
<math>\big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor ... \Bigg\rceil \bigg\rceil \Big\rceil \big\rceil</math>
+
UNIQ0a986f19d8118a5a-math-000006B5-QINU
 
</td>
 
</td>
 
</tr>
 
</tr>
988. satır: 896. satır:
 
<td>\big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow ... \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow</td>
 
<td>\big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow ... \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow</td>
 
<td colspan="2">
 
<td colspan="2">
<math>\big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow ... \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow</math>
+
UNIQ0a986f19d8118a5a-math-000006B6-QINU
 
</td>
 
</td>
 
</tr>
 
</tr>
994. satır: 902. satır:
 
<td>\big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow ... \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow</td>
 
<td>\big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow ... \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow</td>
 
<td colspan="2">
 
<td colspan="2">
<math>\big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow ... \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow</math>
+
UNIQ0a986f19d8118a5a-math-000006B7-QINU
 
</td>
 
</td>
 
</tr>
 
</tr>
1.000. satır: 908. satır:
 
<td>\big / \Big / \bigg / \Bigg / ... \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash</td>
 
<td>\big / \Big / \bigg / \Bigg / ... \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash</td>
 
<td colspan="2">
 
<td colspan="2">
<math>\big / \Big / \bigg / \Bigg / ... \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash</math>
+
UNIQ0a986f19d8118a5a-math-000006B8-QINU
 
</td>
 
</td>
 
</tr>
 
</tr>
1.019. satır: 927. satır:
 
<td>double quad space</td>
 
<td>double quad space</td>
 
<td>a \qquad b</td>
 
<td>a \qquad b</td>
<td><math>a \qquad b</math></td>
+
<td>UNIQ0a986f19d8118a5a-math-000006B9-QINU</td>
 
</tr>
 
</tr>
  
1.025. satır: 933. satır:
 
<td>quad space</td>
 
<td>quad space</td>
 
<td>a \quad b</td>
 
<td>a \quad b</td>
<td><math>a \quad b</math></td>
+
<td>UNIQ0a986f19d8118a5a-math-000006BA-QINU</td>
 
</tr>
 
</tr>
  
1.031. satır: 939. satır:
 
<td>text space</td>
 
<td>text space</td>
 
<td>a\ b</td>
 
<td>a\ b</td>
<td><math>a\ b</math></td>
+
<td>UNIQ0a986f19d8118a5a-math-000006BB-QINU</td>
 
</tr>
 
</tr>
  
1.037. satır: 945. satır:
 
<td>text space without PNG conversion</td>
 
<td>text space without PNG conversion</td>
 
<td>a \mbox{ } b</td>
 
<td>a \mbox{ } b</td>
<td><math>a \mbox{ } b</math></td>
+
<td>UNIQ0a986f19d8118a5a-math-000006BC-QINU</td>
 
</tr>
 
</tr>
  
1.043. satır: 951. satır:
 
<td>large space</td>
 
<td>large space</td>
 
<td>a\;b</td>
 
<td>a\;b</td>
<td><math>a\;b</math></td>
+
<td>UNIQ0a986f19d8118a5a-math-000006BD-QINU</td>
 
</tr>
 
</tr>
  
1.055. satır: 963. satır:
 
<td>small space</td>
 
<td>small space</td>
 
<td>a\,b</td>
 
<td>a\,b</td>
<td><math>a\,b</math></td>
+
<td>UNIQ0a986f19d8118a5a-math-000006BE-QINU</td>
 
</tr>
 
</tr>
  
1.061. satır: 969. satır:
 
<td>no space</td>
 
<td>no space</td>
 
<td>ab</td>
 
<td>ab</td>
<td><math>ab\,</math></td>
+
<td>UNIQ0a986f19d8118a5a-math-000006BF-QINU</td>
 
</tr>
 
</tr>
  
1.067. satır: 975. satır:
 
<td>small negative space</td>
 
<td>small negative space</td>
 
<td>a\!b</td>
 
<td>a\!b</td>
<td><math>a\!b</math></td>
+
<td>UNIQ0a986f19d8118a5a-math-000006C0-QINU</td>
 
</tr>
 
</tr>
  
1.075. satır: 983. satır:
 
Due to the default css
 
Due to the default css
  
<pre>img.tex { vertical-align: middle; }</pre>
+
UNIQ0a986f19d8118a5a-pre-000006C1-QINU
  
an inline expression like <math>\int_{-N}^{N} e^x\, dx = 2 \sinh N</math> should look good.
+
an inline expression like UNIQ0a986f19d8118a5a-math-000006C2-QINU should look good.
  
If you need to align it otherwise, use <code><nowiki><font style="vertical-align:-100%;"><math>...</math></font></nowiki></code> and play with the <code>vertical-align</code> argument until you get it right; however, how it looks may depend on the browser and the browser settings.
+
If you need to align it otherwise, use UNIQ0a986f19d8118a5a-code-000006C3-QINU and play with the UNIQ0a986f19d8118a5a-code-000006C4-QINU argument until you get it right; however, how it looks may depend on the browser and the browser settings.
  
 
Also note that if you rely on this workaround, if/when the rendering on the server gets fixed in future releases, as a result of this extra manual offset your formulae will suddenly be aligned incorrectly. So use it sparingly, if at all.
 
Also note that if you rely on this workaround, if/when the rendering on the server gets fixed in future releases, as a result of this extra manual offset your formulae will suddenly be aligned incorrectly. So use it sparingly, if at all.
1.085. satır: 993. satır:
 
== Forced PNG rendering ==
 
== Forced PNG rendering ==
  
To force the formula to render as PNG, add <code>\,</code> (small space) at the end of the formula (where it is not rendered).  This will force PNG if the user is in "HTML if simple" mode, but not for "HTML if possible" mode (math rendering settings in [[Help:Preferences|preferences]]).
+
To force the formula to render as PNG, add UNIQ0a986f19d8118a5a-code-000006C5-QINU (small space) at the end of the formula (where it is not rendered).  This will force PNG if the user is in "HTML if simple" mode, but not for "HTML if possible" mode (math rendering settings in [[Help:Preferences|preferences]]).
  
You can also use <code>\,\!</code> (small space and negative space, which cancel out) anywhere inside the math tags.  This ''does'' force PNG even in "HTML if possible" mode, unlike <code>\,</code>.
+
You can also use UNIQ0a986f19d8118a5a-code-000006C6-QINU (small space and negative space, which cancel out) anywhere inside the math tags.  This ''does'' force PNG even in "HTML if possible" mode, unlike UNIQ0a986f19d8118a5a-code-000006C7-QINU.
  
 
This could be useful to keep the rendering of formulae in a proof consistent, for example, or to fix formulae that render incorrectly in HTML (at one time, a^{2+2} rendered with an extra underscore), or to demonstrate how something is rendered when it would normally show up as HTML (as in the examples above).
 
This could be useful to keep the rendering of formulae in a proof consistent, for example, or to fix formulae that render incorrectly in HTML (at one time, a^{2+2} rendered with an extra underscore), or to demonstrate how something is rendered when it would normally show up as HTML (as in the examples above).
1.102. satır: 1.010. satır:
 
<tr>
 
<tr>
 
<td>a^{c+2}</td>
 
<td>a^{c+2}</td>
<td><math>a^{c+2}</math></td>
+
<td>UNIQ0a986f19d8118a5a-math-000006C8-QINU</td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>a^{c+2} \,</td>
 
<td>a^{c+2} \,</td>
<td><math>a^{c+2} \,</math></td>
+
<td>UNIQ0a986f19d8118a5a-math-000006C9-QINU</td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>a^{\,\!c+2}</td>
 
<td>a^{\,\!c+2}</td>
<td><math>a^{\,\!c+2}</math> </td>
+
<td>UNIQ0a986f19d8118a5a-math-000006CA-QINU </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>a^{b^{c+2}}</td>
 
<td>a^{b^{c+2}}</td>
<td><math>a^{b^{c+2}}</math> (WRONG with option "HTML if possible or else PNG"!)</td>
+
<td>UNIQ0a986f19d8118a5a-math-000006CB-QINU (WRONG with option "HTML if possible or else PNG"!)</td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>a^{b^{c+2}} \,</td>
 
<td>a^{b^{c+2}} \,</td>
<td><math>a^{b^{c+2}} \,</math> (WRONG with option "HTML if possible or else PNG"!)</td>
+
<td>UNIQ0a986f19d8118a5a-math-000006CC-QINU (WRONG with option "HTML if possible or else PNG"!)</td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>a^{b^{c+2}}\approx 5</td>
 
<td>a^{b^{c+2}}\approx 5</td>
<td><math>a^{b^{c+2}}\approx 5</math> (due to "<math>\approx</math>" correctly displayed, no code "\,\!" needed)</td>
+
<td>UNIQ0a986f19d8118a5a-math-000006CD-QINU (due to "UNIQ0a986f19d8118a5a-math-000006CE-QINU" correctly displayed, no code "\,\!" needed)</td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>a^{b^{\,\!c+2}}</td>
 
<td>a^{b^{\,\!c+2}}</td>
<td><math>a^{b^{\,\!c+2}}</math></td>
+
<td>UNIQ0a986f19d8118a5a-math-000006CF-QINU</td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>\int_{-N}^{N} e^x\, dx</td>
 
<td>\int_{-N}^{N} e^x\, dx</td>
<td><math>\int_{-N}^{N} e^x\, dx</math></td>
+
<td>UNIQ0a986f19d8118a5a-math-000006D0-QINU</td>
 
</tr>
 
</tr>
  
1.147. satır: 1.055. satır:
 
You might want to include a comment in the HTML so people don't "correct" the formula by removing it:
 
You might want to include a comment in the HTML so people don't "correct" the formula by removing it:
  
:''<nowiki><!-- The \,\! is to keep the formula rendered as PNG instead of HTML.  Please don't remove it.--></nowiki>''
+
:''UNIQ0a986f19d8118a5a-nowiki-000006D1-QINU''
  
 
== Color ==
 
== Color ==
1.153. satır: 1.061. satır:
 
Equations can use color:
 
Equations can use color:
  
*<code>{\color{Blue}x^2}+{\color{Brown}2x}-{\color{OliveGreen}1}</code>
+
*UNIQ0a986f19d8118a5a-code-000006D2-QINU
*:<math>{\color{Blue}x^2}+{\color{Brown}2x}-{\color{OliveGreen}1}</math>
+
*:UNIQ0a986f19d8118a5a-math-000006D3-QINU
  
*<code>x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a}</code>
+
*UNIQ0a986f19d8118a5a-code-000006D4-QINU
*:<math>x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a}</math>
+
*:UNIQ0a986f19d8118a5a-math-000006D5-QINU
  
 
See here for [http://oregonstate.edu/%7Epeterseb/tex/samples/docs/color-package-demo.pdf all named colours] supported by LaTeX.
 
See here for [http://oregonstate.edu/%7Epeterseb/tex/samples/docs/color-package-demo.pdf all named colours] supported by LaTeX.
1.167. satır: 1.075. satır:
 
<center>
 
<center>
 
===Quadratic Polynomial===
 
===Quadratic Polynomial===
  <math>ax^2 + bx + c = 0</math>
+
  UNIQ0a986f19d8118a5a-math-000006D6-QINU
  
  <nowiki><math>ax^2 + bx + c = 0</math></nowiki>
+
  UNIQ0a986f19d8118a5a-nowiki-000006D7-QINU
  
 
===Quadratic Polynomial (Force PNG Rendering)===
 
===Quadratic Polynomial (Force PNG Rendering)===
  <math>ax^2 + bx + c = 0\,\!</math>
+
  UNIQ0a986f19d8118a5a-math-000006D8-QINU
 
   
 
   
  <nowiki><math>ax^2 + bx + c = 0\,\!</math></nowiki>
+
  UNIQ0a986f19d8118a5a-nowiki-000006D9-QINU
  
 
===Quadratic Formula===
 
===Quadratic Formula===
  <math>x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}</math>
+
  UNIQ0a986f19d8118a5a-math-000006DA-QINU
 
   
 
   
  <nowiki><math>x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}</math></nowiki>
+
  UNIQ0a986f19d8118a5a-nowiki-000006DB-QINU
  
 
===Tall Parentheses and Fractions ===
 
===Tall Parentheses and Fractions ===
  <math>2 = \left( \frac{\left(3-x\right) \times 2}{3-x} \right)</math>
+
  UNIQ0a986f19d8118a5a-math-000006DC-QINU
 
   
 
   
  <nowiki><math>2 = \left(
+
  UNIQ0a986f19d8118a5a-nowiki-000006DD-QINU
\frac{\left(3-x\right) \times 2}{3-x}
+
\right)</math></nowiki>
+
  
  <math>S_{new} = S_{old} + \frac{ \left( 5-T \right) ^2} {2}</math>
+
  UNIQ0a986f19d8118a5a-math-000006DE-QINU
 
   
 
   
  <nowiki><math>S_{new} = S_{old} +
+
  UNIQ0a986f19d8118a5a-nowiki-000006DF-QINU
\frac{ \left( 5-T \right) ^2} {2}</math></nowiki>
+
  
 
===Integrals===
 
===Integrals===
  <math>\int_a^x \int_a^s f(y)\,dy\,ds = \int_a^x f(y)(x-y)\,dy</math>
+
  UNIQ0a986f19d8118a5a-math-000006E0-QINU
 
   
 
   
  <nowiki><math>\int_a^x \int_a^s f(y)\,dy\,ds
+
  UNIQ0a986f19d8118a5a-nowiki-000006E1-QINU
= \int_a^x f(y)(x-y)\,dy</math></nowiki>
+
  
 
===Summation===
 
===Summation===
  <math>\sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n}{3^m\left(m\,3^n+n\,3^m\right)}</math>
+
  UNIQ0a986f19d8118a5a-math-000006E2-QINU
  
  <nowiki><math>\sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n}
+
  UNIQ0a986f19d8118a5a-nowiki-000006E3-QINU
{3^m\left(m\,3^n+n\,3^m\right)}</math></nowiki>
+
  
 
=== Differential Equation ===
 
=== Differential Equation ===
  <math>u'' + p(x)u' + q(x)u=f(x),\quad x>a</math>
+
  UNIQ0a986f19d8118a5a-math-000006E4-QINU
 
   
 
   
  <nowiki><math>u'' + p(x)u' + q(x)u=f(x),\quad x>a</math></nowiki>
+
  UNIQ0a986f19d8118a5a-nowiki-000006E5-QINU
  
 
===Complex numbers===
 
===Complex numbers===
  <math>|\bar{z}| = |z|, |(\bar{z})^n| = |z|^n, \arg(z^n) = n \arg(z)</math>
+
  UNIQ0a986f19d8118a5a-math-000006E6-QINU
 
   
 
   
  <nowiki><math>|\bar{z}| = |z|,
+
  UNIQ0a986f19d8118a5a-nowiki-000006E7-QINU
|(\bar{z})^n| = |z|^n,
+
\arg(z^n) = n \arg(z)</math></nowiki>
+
  
 
===Limits===
 
===Limits===
  <math>\lim_{z\rightarrow z_0} f(z)=f(z_0)</math>
+
  UNIQ0a986f19d8118a5a-math-000006E8-QINU
 
   
 
   
  <nowiki><math>\lim_{z\rightarrow z_0} f(z)=f(z_0)</math></nowiki>
+
  UNIQ0a986f19d8118a5a-nowiki-000006E9-QINU
  
 
===Integral Equation===
 
===Integral Equation===
  <math>\phi_n(\kappa)
+
  UNIQ0a986f19d8118a5a-math-000006EA-QINU
= \frac{1}{4\pi^2\kappa^2} \int_0^\infty \frac{\sin(\kappa R)}{\kappa R}  \frac{\partial}{\partial R}  \left[R^2\frac{\partial D_n(R)}{\partial R}\right]\,dR</math>
+
 
   
 
   
  <nowiki><math>\phi_n(\kappa) =
+
  UNIQ0a986f19d8118a5a-nowiki-000006EB-QINU
\frac{1}{4\pi^2\kappa^2} \int_0^\infty
+
\frac{\sin(\kappa R)}{\kappa R}
+
\frac{\partial}{\partial R}
+
\left[R^2\frac{\partial D_n(R)}{\partial R}\right]\,dR</math></nowiki>
+
  
 
===Example===
 
===Example===
  <math>\phi_n(\kappa) = 0.033C_n^2\kappa^{-11/3},\quad \frac{1}{L_0}\ll\kappa\ll\frac{1}{l_0}</math>
+
  UNIQ0a986f19d8118a5a-math-000006EC-QINU
 
   
 
   
  <nowiki><math>\phi_n(\kappa) =
+
  UNIQ0a986f19d8118a5a-nowiki-000006ED-QINU
0.033C_n^2\kappa^{-11/3},\quad
+
\frac{1}{L_0}\ll\kappa\ll\frac{1}{l_0}</math></nowiki>
+
  
 
===Continuation and cases===
 
===Continuation and cases===
  <math>f(x) = \begin{cases}1 & -1 \le x < 0 \\
+
  UNIQ0a986f19d8118a5a-math-000006EE-QINU
\frac{1}{2} & x = 0 \\ 1 - x^2 & 0 < x \le 1\end{cases}</math>
+
 
   
 
   
  <nowiki><math>
+
  UNIQ0a986f19d8118a5a-nowiki-000006EF-QINU
f(x) =
+
\begin{cases}
+
1 & -1 \le x < 0 \\
+
\frac{1}{2} & x = 0 \\
+
1 - x^2 & 0 < x\le 1
+
\end{cases}
+
</math></nowiki>
+
  
 
===Prefixed subscript===
 
===Prefixed subscript===
  <math>{}_pF_q(a_1,\dots,a_p;c_1,\dots,c_q;z) = \sum_{n=0}^\infty \frac{(a_1)_n\cdot\cdot\cdot(a_p)_n}{(c_1)_n\cdot\cdot\cdot(c_q)_n}\frac{z^n}{n!}</math>
+
  UNIQ0a986f19d8118a5a-math-000006F0-QINU
 
   
 
   
  <nowiki> <math>{}_pF_q(a_1,\dots,a_p;c_1,\dots,c_q;z)
+
  UNIQ0a986f19d8118a5a-nowiki-000006F1-QINU
= \sum_{n=0}^\infty
+
\frac{(a_1)_n\cdot\cdot\cdot(a_p)_n}{(c_1)_n\cdot\cdot\cdot(c_q)_n}
+
\frac{z^n}{n!}</math></nowiki>
+
  
 
</center>
 
</center>

18:34, 7 Mart 2014 tarihindeki hâli

MediaWiki yazılımı matematiksel ifadelerin biçimlendirilmesinde LaTeX ve AMSLaTeX yazılımlarını içeren TeX yazılımını kullanmaktadır. Bazı matematiksel formüller kişisel tercihlere bağlı olarak PNG, bazıları ise HTML olarak gözükebilir.


UNIQ0a986f19d8118a5a-item-1285--QINU

Kodlama

Matematiksel kodlar UNIQ0a986f19d8118a5a-code-00000506-QINU arasına yazılır. Düzenleme yapılan sayfadaki araç kutusunda bunun için bir buton vardır. HTML'de olduğu gibi Tex'de de bir taneden fazla verilen boşluklar ve boş satırlar dikkate alınmaz. Tex kodları doğru yazılmadıkları zaman hata uyarısı verirler. Bu nedenle kodları doğru yazdığınızdan emin olmalısınız.

UNIQ0a986f19d8118a5a-item-1287--QINU

Sunum

UNIQ0a986f19d8118a5a-item-1288--QINU It should be pointed out that most of these shortcomings have been addressed by Maynard Handley, but have not been released yet.

The UNIQ0a986f19d8118a5a-code-00000509-QINU attribute of the PNG images (the text that is displayed if your browser can't display images; Internet Explorer shows it up in the hover box) is the wikitext that produced them, excluding the UNIQ0a986f19d8118a5a-code-0000050A-QINU and UNIQ0a986f19d8118a5a-code-0000050B-QINU.

Apart from function and operator names, as is customary in mathematics for variables, letters are in italics; digits are not. For other text, (like variable labels) to avoid being rendered in italics like variables, use UNIQ0a986f19d8118a5a-code-0000050C-QINU or UNIQ0a986f19d8118a5a-code-0000050D-QINU. For example, UNIQ0a986f19d8118a5a-code-0000050E-QINU gives UNIQ0a986f19d8118a5a-math-0000050F-QINU.

TeX ve HTML

Before introducing TeX markup for producing special characters, it should be noted that, as this comparison table shows, sometimes similar results can be achieved in HTML (see Help:Special characters).

TeX kodlaması TeX çıktısı HTML kodlaması HTML çıktısı
UNIQ0a986f19d8118a5a-code-00000510-QINU UNIQ0a986f19d8118a5a-math-00000511-QINU UNIQ0a986f19d8118a5a-code-00000512-QINU α
UNIQ0a986f19d8118a5a-code-00000513-QINU UNIQ0a986f19d8118a5a-math-00000514-QINU UNIQ0a986f19d8118a5a-code-00000515-QINU √2
UNIQ0a986f19d8118a5a-code-00000516-QINU UNIQ0a986f19d8118a5a-math-00000517-QINU UNIQ0a986f19d8118a5a-code-00000518-QINU 1−e²</div>


UNIQ0a986f19d8118a5a-item-1305--QINUas follows.

HTML'nin avantajları

  1. HTML ile yazılan formüller her zaman yazının bütünü gibi durur.
  2. HTML ile yazılan formüllerde, sayfanın arka planı, font türü, internet sunucusunun ayarları aktif olarak çalışır.
  3. HTML kullanarak yazılan formüller sayfa açılım hızını arttırır.


TeX kullanımının avantajları

  1. Tex kalite bakımından HTML'den ileri bir yazılımdır.
  2. Tex yazılımında "UNIQ0a986f19d8118a5a-code-0000051A-QINU" kodlaması matematiksel değişken anlamına gelir. Fakat HTML'de "UNIQ0a986f19d8118a5a-code-0000051B-QINU" kodlaması herhangi bir anlama gelebilir. Bu yüzden bilgiler daha kolay kaybolabilir.
  3. TeX yazılımı özellikle formül yazımı için tasarlanmıştır. Bu nedenle daha kolay ve daha işlevseldir.
  4. One consequence of point 1 is that TeX can be transformed into HTML, but not vice-versa. This means that on the server side we can always transform a formula, based on its complexity and location within the text, user preferences, type of browser, etc. Therefore, where possible, all the benefits of HTML can be retained, together with the benefits of TeX. It's true that the current situation is not ideal, but that's not a good reason to drop information/contents. It's more a reason to help improve the situation.
  5. Diğer önemli husus TeX MathML kodlamasına, bu kodlamayı destekleyen sunucular tarafından çevirlebilmektedir.
  6. TeX komutlarını kullanırken sunucu desteğine ya da diğer teknik desteklere ihtiyaç duymazsınız. Bu kodlamanın işlevselliğini serverler sağlamaktadır. Bu nedenle her türlü sunucuda, rahatlıkla yazıp kullanabileceğiniz bir kodlama türüdür.

Fonksiyonlar, semboller, özel karakterler

UNIQ0a986f19d8118a5a-item-1308--QINU{| class="wikitable"

! colspan="2" |

Aksanlar/Vurgular

|- |UNIQ0a986f19d8118a5a-code-0000051D-QINU |UNIQ0a986f19d8118a5a-math-0000051E-QINU |- |UNIQ0a986f19d8118a5a-code-0000051F-QINU |UNIQ0a986f19d8118a5a-math-00000520-QINU |- ! colspan="2" |

Standart fonksiyonlar

|- |UNIQ0a986f19d8118a5a-code-00000521-QINU |UNIQ0a986f19d8118a5a-math-00000522-QINU |- |UNIQ0a986f19d8118a5a-code-00000523-QINU |UNIQ0a986f19d8118a5a-math-00000524-QINU |- |UNIQ0a986f19d8118a5a-code-00000525-QINU |UNIQ0a986f19d8118a5a-math-00000526-QINU |- |UNIQ0a986f19d8118a5a-code-00000527-QINU |UNIQ0a986f19d8118a5a-math-00000528-QINU |- |UNIQ0a986f19d8118a5a-code-00000529-QINU |UNIQ0a986f19d8118a5a-math-0000052A-QINU |- |UNIQ0a986f19d8118a5a-code-0000052B-QINU |UNIQ0a986f19d8118a5a-math-0000052C-QINU |- |UNIQ0a986f19d8118a5a-code-0000052D-QINU |UNIQ0a986f19d8118a5a-math-0000052E-QINU |- |UNIQ0a986f19d8118a5a-code-0000052F-QINU |UNIQ0a986f19d8118a5a-math-00000530-QINU |- |UNIQ0a986f19d8118a5a-code-00000531-QINU |UNIQ0a986f19d8118a5a-math-00000532-QINU |-

! colspan="2" |

Modüler aritmatik

|- |UNIQ0a986f19d8118a5a-code-00000533-QINU |UNIQ0a986f19d8118a5a-math-00000534-QINU |- ! colspan="2" |

Türevsel karakterler

|- |UNIQ0a986f19d8118a5a-code-00000535-QINU |UNIQ0a986f19d8118a5a-math-00000536-QINU |- ! colspan="2" |

Kümeler

|- |UNIQ0a986f19d8118a5a-code-00000537-QINU |UNIQ0a986f19d8118a5a-math-00000538-QINU |- |UNIQ0a986f19d8118a5a-code-00000539-QINU |UNIQ0a986f19d8118a5a-math-0000053A-QINU |- |UNIQ0a986f19d8118a5a-code-0000053B-QINU |UNIQ0a986f19d8118a5a-math-0000053C-QINU |- |UNIQ0a986f19d8118a5a-code-0000053D-QINU |UNIQ0a986f19d8118a5a-math-0000053E-QINU |- ! colspan="2" |

Operatör işaretler

|- |UNIQ0a986f19d8118a5a-code-0000053F-QINU |UNIQ0a986f19d8118a5a-math-00000540-QINU |- |UNIQ0a986f19d8118a5a-code-00000541-QINU |UNIQ0a986f19d8118a5a-math-00000542-QINU |- |UNIQ0a986f19d8118a5a-code-00000543-QINU |UNIQ0a986f19d8118a5a-math-00000544-QINU |- ! colspan="2" |

Mantıksal ifadeler

|- |UNIQ0a986f19d8118a5a-code-00000545-QINU |UNIQ0a986f19d8118a5a-math-00000546-QINU |- |UNIQ0a986f19d8118a5a-code-00000547-QINU |UNIQ0a986f19d8118a5a-math-00000548-QINU |- ! colspan="2" |

Kök alma

|- |UNIQ0a986f19d8118a5a-code-00000549-QINU |UNIQ0a986f19d8118a5a-math-0000054A-QINU |- ! colspan="2" |

Eşitlik/Denklik/Benzerlik işaretleri

|- |UNIQ0a986f19d8118a5a-code-0000054B-QINU |UNIQ0a986f19d8118a5a-math-0000054C-QINU |- |UNIQ0a986f19d8118a5a-code-0000054D-QINU |UNIQ0a986f19d8118a5a-math-0000054E-QINU |- ! colspan="2" |

Geometrik

|- |UNIQ0a986f19d8118a5a-code-0000054F-QINU |UNIQ0a986f19d8118a5a-math-00000550-QINU |- ! colspan="2" |

Oklar/Bildiri ifadeleri

|- |UNIQ0a986f19d8118a5a-code-00000551-QINU |UNIQ0a986f19d8118a5a-math-00000552-QINU |- |UNIQ0a986f19d8118a5a-code-00000553-QINU |UNIQ0a986f19d8118a5a-math-00000554-QINU |- |UNIQ0a986f19d8118a5a-code-00000555-QINU |UNIQ0a986f19d8118a5a-math-00000556-QINU |- |UNIQ0a986f19d8118a5a-code-00000557-QINU |UNIQ0a986f19d8118a5a-math-00000558-QINU |- |UNIQ0a986f19d8118a5a-code-00000559-QINU |UNIQ0a986f19d8118a5a-math-0000055A-QINU |- |UNIQ0a986f19d8118a5a-code-0000055B-QINU |UNIQ0a986f19d8118a5a-math-0000055C-QINU |- |UNIQ0a986f19d8118a5a-code-0000055D-QINU |UNIQ0a986f19d8118a5a-math-0000055E-QINU |- |UNIQ0a986f19d8118a5a-code-0000055F-QINU |UNIQ0a986f19d8118a5a-math-00000560-QINU |-

! colspan="2" |

Özel

|- |UNIQ0a986f19d8118a5a-code-00000561-QINU |UNIQ0a986f19d8118a5a-math-00000562-QINU |- |UNIQ0a986f19d8118a5a-code-00000563-QINU |UNIQ0a986f19d8118a5a-math-00000564-QINU |- |UNIQ0a986f19d8118a5a-code-00000565-QINU |UNIQ0a986f19d8118a5a-math-00000566-QINU |- |UNIQ0a986f19d8118a5a-code-00000567-QINU |UNIQ0a986f19d8118a5a-math-00000568-QINU |- |UNIQ0a986f19d8118a5a-code-00000569-QINU |UNIQ0a986f19d8118a5a-math-0000056A-QINU |- ! colspan="2" |

Unsorted (new stuff)

|- |UNIQ0a986f19d8118a5a-code-0000056B-QINU |UNIQ0a986f19d8118a5a-math-0000056C-QINU |- |UNIQ0a986f19d8118a5a-code-0000056D-QINU |UNIQ0a986f19d8118a5a-math-0000056E-QINU |- |UNIQ0a986f19d8118a5a-code-0000056F-QINU |UNIQ0a986f19d8118a5a-math-00000570-QINU |- |UNIQ0a986f19d8118a5a-code-00000571-QINU |UNIQ0a986f19d8118a5a-math-00000572-QINU |- |UNIQ0a986f19d8118a5a-code-00000573-QINU |UNIQ0a986f19d8118a5a-math-00000574-QINU |- |UNIQ0a986f19d8118a5a-code-00000575-QINU |UNIQ0a986f19d8118a5a-math-00000576-QINU |- |UNIQ0a986f19d8118a5a-code-00000577-QINU |UNIQ0a986f19d8118a5a-math-00000578-QINU |- |UNIQ0a986f19d8118a5a-code-00000579-QINU |UNIQ0a986f19d8118a5a-math-0000057A-QINU |- |UNIQ0a986f19d8118a5a-code-0000057B-QINU |UNIQ0a986f19d8118a5a-math-0000057C-QINU |- |UNIQ0a986f19d8118a5a-code-0000057D-QINU |UNIQ0a986f19d8118a5a-math-0000057E-QINU |- |UNIQ0a986f19d8118a5a-code-0000057F-QINU |UNIQ0a986f19d8118a5a-math-00000580-QINU |- |UNIQ0a986f19d8118a5a-code-00000581-QINU |UNIQ0a986f19d8118a5a-math-00000582-QINU |- |UNIQ0a986f19d8118a5a-code-00000583-QINU |UNIQ0a986f19d8118a5a-math-00000584-QINU |- |UNIQ0a986f19d8118a5a-code-00000585-QINU |UNIQ0a986f19d8118a5a-math-00000586-QINU |- |UNIQ0a986f19d8118a5a-code-00000587-QINU |UNIQ0a986f19d8118a5a-math-00000588-QINU |- |UNIQ0a986f19d8118a5a-code-00000589-QINU |UNIQ0a986f19d8118a5a-math-0000058A-QINU |- |UNIQ0a986f19d8118a5a-code-0000058B-QINU |UNIQ0a986f19d8118a5a-math-0000058C-QINU |- |UNIQ0a986f19d8118a5a-code-0000058D-QINU |UNIQ0a986f19d8118a5a-math-0000058E-QINU |}

Üslü ifadeler, toplam-çarpım sembolleri, türev, integral

Feature Syntax How it looks rendered
HTML PNG
Superscript UNIQ0a986f19d8118a5a-code-0000058F-QINU UNIQ0a986f19d8118a5a-math-00000590-QINU UNIQ0a986f19d8118a5a-math-00000591-QINU
Subscript UNIQ0a986f19d8118a5a-code-00000592-QINU UNIQ0a986f19d8118a5a-math-00000593-QINU UNIQ0a986f19d8118a5a-math-00000594-QINU
Grouping UNIQ0a986f19d8118a5a-code-00000595-QINU UNIQ0a986f19d8118a5a-math-00000596-QINU UNIQ0a986f19d8118a5a-math-00000597-QINU
UNIQ0a986f19d8118a5a-code-00000598-QINU UNIQ0a986f19d8118a5a-math-00000599-QINU UNIQ0a986f19d8118a5a-math-0000059A-QINU
Combining sub & super UNIQ0a986f19d8118a5a-code-0000059B-QINU UNIQ0a986f19d8118a5a-math-0000059C-QINU
Preceding and/or Additional sub & super UNIQ0a986f19d8118a5a-code-0000059D-QINU UNIQ0a986f19d8118a5a-math-0000059E-QINU
UNIQ0a986f19d8118a5a-code-0000059F-QINU UNIQ0a986f19d8118a5a-math-000005A0-QINU
Stacking UNIQ0a986f19d8118a5a-code-000005A1-QINU UNIQ0a986f19d8118a5a-math-000005A2-QINU
UNIQ0a986f19d8118a5a-code-000005A3-QINU UNIQ0a986f19d8118a5a-math-000005A4-QINU
UNIQ0a986f19d8118a5a-code-000005A5-QINU UNIQ0a986f19d8118a5a-math-000005A6-QINU
UNIQ0a986f19d8118a5a-code-000005A7-QINU UNIQ0a986f19d8118a5a-math-000005A8-QINU
Derivative (forced PNG) UNIQ0a986f19d8118a5a-code-000005A9-QINU   UNIQ0a986f19d8118a5a-math-000005AA-QINU
Derivative (f in italics may overlap primes in HTML) UNIQ0a986f19d8118a5a-code-000005AB-QINU UNIQ0a986f19d8118a5a-math-000005AC-QINU UNIQ0a986f19d8118a5a-math-000005AD-QINU
Derivative (HTML-yanlış) UNIQ0a986f19d8118a5a-code-000005AE-QINU UNIQ0a986f19d8118a5a-math-000005AF-QINU UNIQ0a986f19d8118a5a-math-000005B0-QINU
Derivative (PNG-yanlış) UNIQ0a986f19d8118a5a-code-000005B1-QINU UNIQ0a986f19d8118a5a-math-000005B2-QINU UNIQ0a986f19d8118a5a-math-000005B3-QINU
Derivative dots UNIQ0a986f19d8118a5a-code-000005B4-QINU UNIQ0a986f19d8118a5a-math-000005B5-QINU
Underlines, overlines, vectors UNIQ0a986f19d8118a5a-code-000005B6-QINU UNIQ0a986f19d8118a5a-math-000005B7-QINU
UNIQ0a986f19d8118a5a-code-000005B8-QINU UNIQ0a986f19d8118a5a-math-000005B9-QINU
UNIQ0a986f19d8118a5a-code-000005BA-QINU UNIQ0a986f19d8118a5a-math-000005BB-QINU
Arrows UNIQ0a986f19d8118a5a-code-000005BC-QINU UNIQ0a986f19d8118a5a-math-000005BD-QINU
Overbraces UNIQ0a986f19d8118a5a-code-000005BE-QINU UNIQ0a986f19d8118a5a-math-000005BF-QINU
Underbraces UNIQ0a986f19d8118a5a-code-000005C0-QINU UNIQ0a986f19d8118a5a-math-000005C1-QINU
Sum UNIQ0a986f19d8118a5a-code-000005C2-QINU UNIQ0a986f19d8118a5a-math-000005C3-QINU
Sum (force UNIQ0a986f19d8118a5a-code-000005C4-QINU) UNIQ0a986f19d8118a5a-code-000005C5-QINU UNIQ0a986f19d8118a5a-math-000005C6-QINU
Product UNIQ0a986f19d8118a5a-code-000005C7-QINU UNIQ0a986f19d8118a5a-math-000005C8-QINU
Product (force UNIQ0a986f19d8118a5a-code-000005C9-QINU) UNIQ0a986f19d8118a5a-code-000005CA-QINU UNIQ0a986f19d8118a5a-math-000005CB-QINU
Coproduct UNIQ0a986f19d8118a5a-code-000005CC-QINU UNIQ0a986f19d8118a5a-math-000005CD-QINU
Coproduct (force UNIQ0a986f19d8118a5a-code-000005CE-QINU) UNIQ0a986f19d8118a5a-code-000005CF-QINU UNIQ0a986f19d8118a5a-math-000005D0-QINU
Limit UNIQ0a986f19d8118a5a-code-000005D1-QINU UNIQ0a986f19d8118a5a-math-000005D2-QINU
Limit (force UNIQ0a986f19d8118a5a-code-000005D3-QINU) UNIQ0a986f19d8118a5a-code-000005D4-QINU UNIQ0a986f19d8118a5a-math-000005D5-QINU
Integral UNIQ0a986f19d8118a5a-code-000005D6-QINU UNIQ0a986f19d8118a5a-math-000005D7-QINU
İntegral (force UNIQ0a986f19d8118a5a-code-000005D8-QINU) UNIQ0a986f19d8118a5a-code-000005D9-QINU UNIQ0a986f19d8118a5a-math-000005DA-QINU
Çift katlı integral UNIQ0a986f19d8118a5a-code-000005DB-QINU UNIQ0a986f19d8118a5a-math-000005DC-QINU
Üç katlı integral UNIQ0a986f19d8118a5a-code-000005DD-QINU UNIQ0a986f19d8118a5a-math-000005DE-QINU
Dört katlı integral UNIQ0a986f19d8118a5a-code-000005DF-QINU UNIQ0a986f19d8118a5a-math-000005E0-QINU
Path integral UNIQ0a986f19d8118a5a-code-000005E1-QINU UNIQ0a986f19d8118a5a-math-000005E2-QINU
Intersections UNIQ0a986f19d8118a5a-code-000005E3-QINU UNIQ0a986f19d8118a5a-math-000005E4-QINU
Unions UNIQ0a986f19d8118a5a-code-000005E5-QINU UNIQ0a986f19d8118a5a-math-000005E6-QINU

Fractions, matrices, multilines

Feature Syntax How it looks rendered
Fractions UNIQ0a986f19d8118a5a-code-000005E7-QINU UNIQ0a986f19d8118a5a-math-000005E8-QINU
Small Fractions UNIQ0a986f19d8118a5a-code-000005E9-QINU UNIQ0a986f19d8118a5a-math-000005EA-QINU
Large (normal) Fractions UNIQ0a986f19d8118a5a-code-000005EB-QINU UNIQ0a986f19d8118a5a-math-000005EC-QINU
Large (nestled) Fractions UNIQ0a986f19d8118a5a-code-000005ED-QINU UNIQ0a986f19d8118a5a-math-000005EE-QINU
Binomial coefficients UNIQ0a986f19d8118a5a-code-000005EF-QINU UNIQ0a986f19d8118a5a-math-000005F0-QINU
Small Binomial coefficients UNIQ0a986f19d8118a5a-code-000005F1-QINU UNIQ0a986f19d8118a5a-math-000005F2-QINU
Large (normal) Binomial coefficients UNIQ0a986f19d8118a5a-code-000005F3-QINU UNIQ0a986f19d8118a5a-math-000005F4-QINU
Matrices UNIQ0a986f19d8118a5a-pre-000005F5-QINU UNIQ0a986f19d8118a5a-math-000005F6-QINU
UNIQ0a986f19d8118a5a-pre-000005F7-QINU UNIQ0a986f19d8118a5a-math-000005F8-QINU
UNIQ0a986f19d8118a5a-pre-000005F9-QINU UNIQ0a986f19d8118a5a-math-000005FA-QINU
UNIQ0a986f19d8118a5a-pre-000005FB-QINU UNIQ0a986f19d8118a5a-math-000005FC-QINU
UNIQ0a986f19d8118a5a-pre-000005FD-QINU UNIQ0a986f19d8118a5a-math-000005FE-QINU
UNIQ0a986f19d8118a5a-pre-000005FF-QINU UNIQ0a986f19d8118a5a-math-00000600-QINU
UNIQ0a986f19d8118a5a-pre-00000601-QINU UNIQ0a986f19d8118a5a-math-00000602-QINU
Case distinctions UNIQ0a986f19d8118a5a-pre-00000603-QINU UNIQ0a986f19d8118a5a-math-00000604-QINU
Multiline equations UNIQ0a986f19d8118a5a-pre-00000605-QINU UNIQ0a986f19d8118a5a-math-00000606-QINU
UNIQ0a986f19d8118a5a-pre-00000607-QINU UNIQ0a986f19d8118a5a-math-00000608-QINU
Multiline equations (must define number of colums used ({lcr}) (should not be used unless needed) UNIQ0a986f19d8118a5a-pre-00000609-QINU UNIQ0a986f19d8118a5a-math-0000060A-QINU
Multiline equations (more) UNIQ0a986f19d8118a5a-pre-0000060B-QINU UNIQ0a986f19d8118a5a-math-0000060C-QINU
Breaking up a long expression so that it wraps when necessary UNIQ0a986f19d8118a5a-pre-0000060D-QINU

UNIQ0a986f19d8118a5a-math-0000060E-QINUUNIQ0a986f19d8118a5a-math-0000060F-QINUUNIQ0a986f19d8118a5a-math-00000610-QINU

Simultaneous equations UNIQ0a986f19d8118a5a-pre-00000611-QINU UNIQ0a986f19d8118a5a-math-00000612-QINU

Alphabets and typefaces

Greek alphabet
UNIQ0a986f19d8118a5a-code-00000613-QINU UNIQ0a986f19d8118a5a-math-00000614-QINU
UNIQ0a986f19d8118a5a-code-00000615-QINU UNIQ0a986f19d8118a5a-math-00000616-QINU
UNIQ0a986f19d8118a5a-code-00000617-QINU UNIQ0a986f19d8118a5a-math-00000618-QINU
UNIQ0a986f19d8118a5a-code-00000619-QINU UNIQ0a986f19d8118a5a-math-0000061A-QINU
UNIQ0a986f19d8118a5a-code-0000061B-QINU UNIQ0a986f19d8118a5a-math-0000061C-QINU
UNIQ0a986f19d8118a5a-code-0000061D-QINU UNIQ0a986f19d8118a5a-math-0000061E-QINU
UNIQ0a986f19d8118a5a-code-0000061F-QINU UNIQ0a986f19d8118a5a-math-00000620-QINU
UNIQ0a986f19d8118a5a-code-00000621-QINU UNIQ0a986f19d8118a5a-math-00000622-QINU
UNIQ0a986f19d8118a5a-code-00000623-QINU UNIQ0a986f19d8118a5a-math-00000624-QINU
UNIQ0a986f19d8118a5a-code-00000625-QINU UNIQ0a986f19d8118a5a-math-00000626-QINU
Blackboard Bold/Scripts
UNIQ0a986f19d8118a5a-code-00000627-QINU UNIQ0a986f19d8118a5a-math-00000628-QINU
UNIQ0a986f19d8118a5a-code-00000629-QINU UNIQ0a986f19d8118a5a-math-0000062A-QINU
UNIQ0a986f19d8118a5a-code-0000062B-QINU UNIQ0a986f19d8118a5a-math-0000062C-QINU
UNIQ0a986f19d8118a5a-code-0000062D-QINU UNIQ0a986f19d8118a5a-math-0000062E-QINU
boldface (vectors)
UNIQ0a986f19d8118a5a-code-0000062F-QINU UNIQ0a986f19d8118a5a-math-00000630-QINU
UNIQ0a986f19d8118a5a-code-00000631-QINU UNIQ0a986f19d8118a5a-math-00000632-QINU
UNIQ0a986f19d8118a5a-code-00000633-QINU UNIQ0a986f19d8118a5a-math-00000634-QINU
UNIQ0a986f19d8118a5a-code-00000635-QINU UNIQ0a986f19d8118a5a-math-00000636-QINU
UNIQ0a986f19d8118a5a-code-00000637-QINU UNIQ0a986f19d8118a5a-math-00000638-QINU
UNIQ0a986f19d8118a5a-code-00000639-QINU UNIQ0a986f19d8118a5a-math-0000063A-QINU
UNIQ0a986f19d8118a5a-code-0000063B-QINU UNIQ0a986f19d8118a5a-math-0000063C-QINU
UNIQ0a986f19d8118a5a-code-0000063D-QINU UNIQ0a986f19d8118a5a-math-0000063E-QINU
UNIQ0a986f19d8118a5a-code-0000063F-QINU UNIQ0a986f19d8118a5a-math-00000640-QINU
UNIQ0a986f19d8118a5a-code-00000641-QINU UNIQ0a986f19d8118a5a-math-00000642-QINU
Boldface (greek)
UNIQ0a986f19d8118a5a-code-00000643-QINU UNIQ0a986f19d8118a5a-math-00000644-QINU
UNIQ0a986f19d8118a5a-code-00000645-QINU UNIQ0a986f19d8118a5a-math-00000646-QINU
UNIQ0a986f19d8118a5a-code-00000647-QINU UNIQ0a986f19d8118a5a-math-00000648-QINU
UNIQ0a986f19d8118a5a-code-00000649-QINU UNIQ0a986f19d8118a5a-math-0000064A-QINU
UNIQ0a986f19d8118a5a-code-0000064B-QINU UNIQ0a986f19d8118a5a-math-0000064C-QINU
UNIQ0a986f19d8118a5a-code-0000064D-QINU UNIQ0a986f19d8118a5a-math-0000064E-QINU
UNIQ0a986f19d8118a5a-code-0000064F-QINU UNIQ0a986f19d8118a5a-math-00000650-QINU
UNIQ0a986f19d8118a5a-code-00000651-QINU UNIQ0a986f19d8118a5a-math-00000652-QINU
UNIQ0a986f19d8118a5a-code-00000653-QINU UNIQ0a986f19d8118a5a-math-00000654-QINU
UNIQ0a986f19d8118a5a-code-00000655-QINU UNIQ0a986f19d8118a5a-math-00000656-QINU
Italics
UNIQ0a986f19d8118a5a-code-00000657-QINU UNIQ0a986f19d8118a5a-math-00000658-QINU
UNIQ0a986f19d8118a5a-code-00000659-QINU UNIQ0a986f19d8118a5a-math-0000065A-QINU
UNIQ0a986f19d8118a5a-code-0000065B-QINU UNIQ0a986f19d8118a5a-math-0000065C-QINU
UNIQ0a986f19d8118a5a-code-0000065D-QINU UNIQ0a986f19d8118a5a-math-0000065E-QINU
UNIQ0a986f19d8118a5a-code-0000065F-QINU UNIQ0a986f19d8118a5a-math-00000660-QINU
UNIQ0a986f19d8118a5a-code-00000661-QINU UNIQ0a986f19d8118a5a-math-00000662-QINU
UNIQ0a986f19d8118a5a-code-00000663-QINU UNIQ0a986f19d8118a5a-math-00000664-QINU
UNIQ0a986f19d8118a5a-code-00000665-QINU UNIQ0a986f19d8118a5a-math-00000666-QINU
UNIQ0a986f19d8118a5a-code-00000667-QINU UNIQ0a986f19d8118a5a-math-00000668-QINU
UNIQ0a986f19d8118a5a-code-00000669-QINU UNIQ0a986f19d8118a5a-math-0000066A-QINU
Roman typeface
UNIQ0a986f19d8118a5a-code-0000066B-QINU UNIQ0a986f19d8118a5a-math-0000066C-QINU
UNIQ0a986f19d8118a5a-code-0000066D-QINU UNIQ0a986f19d8118a5a-math-0000066E-QINU
UNIQ0a986f19d8118a5a-code-0000066F-QINU UNIQ0a986f19d8118a5a-math-00000670-QINU
UNIQ0a986f19d8118a5a-code-00000671-QINU UNIQ0a986f19d8118a5a-math-00000672-QINU
UNIQ0a986f19d8118a5a-code-00000673-QINU UNIQ0a986f19d8118a5a-math-00000674-QINU
UNIQ0a986f19d8118a5a-code-00000675-QINU UNIQ0a986f19d8118a5a-math-00000676-QINU
UNIQ0a986f19d8118a5a-code-00000677-QINU UNIQ0a986f19d8118a5a-math-00000678-QINU
UNIQ0a986f19d8118a5a-code-00000679-QINU UNIQ0a986f19d8118a5a-math-0000067A-QINU
UNIQ0a986f19d8118a5a-code-0000067B-QINU UNIQ0a986f19d8118a5a-math-0000067C-QINU
UNIQ0a986f19d8118a5a-code-0000067D-QINU UNIQ0a986f19d8118a5a-math-0000067E-QINU
Fraktur typeface
UNIQ0a986f19d8118a5a-code-0000067F-QINU UNIQ0a986f19d8118a5a-math-00000680-QINU
UNIQ0a986f19d8118a5a-code-00000681-QINU UNIQ0a986f19d8118a5a-math-00000682-QINU
UNIQ0a986f19d8118a5a-code-00000683-QINU UNIQ0a986f19d8118a5a-math-00000684-QINU
UNIQ0a986f19d8118a5a-code-00000685-QINU UNIQ0a986f19d8118a5a-math-00000686-QINU
UNIQ0a986f19d8118a5a-code-00000687-QINU UNIQ0a986f19d8118a5a-math-00000688-QINU
UNIQ0a986f19d8118a5a-code-00000689-QINU UNIQ0a986f19d8118a5a-math-0000068A-QINU
UNIQ0a986f19d8118a5a-code-0000068B-QINU UNIQ0a986f19d8118a5a-math-0000068C-QINU
UNIQ0a986f19d8118a5a-code-0000068D-QINU UNIQ0a986f19d8118a5a-math-0000068E-QINU
UNIQ0a986f19d8118a5a-code-0000068F-QINU UNIQ0a986f19d8118a5a-math-00000690-QINU
UNIQ0a986f19d8118a5a-code-00000691-QINU UNIQ0a986f19d8118a5a-math-00000692-QINU
Calligraphy/Script
UNIQ0a986f19d8118a5a-code-00000693-QINU UNIQ0a986f19d8118a5a-math-00000694-QINU
UNIQ0a986f19d8118a5a-code-00000695-QINU UNIQ0a986f19d8118a5a-math-00000696-QINU
UNIQ0a986f19d8118a5a-code-00000697-QINU UNIQ0a986f19d8118a5a-math-00000698-QINU
UNIQ0a986f19d8118a5a-code-00000699-QINU UNIQ0a986f19d8118a5a-math-0000069A-QINU
Hebrew
UNIQ0a986f19d8118a5a-code-0000069B-QINU UNIQ0a986f19d8118a5a-math-0000069C-QINU
Feature Syntax How it looks rendered
non-italicised characters \mbox{abc} UNIQ0a986f19d8118a5a-math-0000069D-QINU UNIQ0a986f19d8118a5a-math-0000069E-QINU
mixed italics (bad) \mbox{if} n \mbox{is even} UNIQ0a986f19d8118a5a-math-0000069F-QINU UNIQ0a986f19d8118a5a-math-000006A0-QINU
mixed italics (good) \mbox{if }n\mbox{ is even} UNIQ0a986f19d8118a5a-math-000006A1-QINU UNIQ0a986f19d8118a5a-math-000006A2-QINU
mixed italics (more legible: ~ is a non-breaking space, while "\ " forces a space) \mbox{if}~n\ \mbox{is even} UNIQ0a986f19d8118a5a-math-000006A3-QINU UNIQ0a986f19d8118a5a-math-000006A4-QINU

Parenthesizing big expressions, brackets, bars

Feature Syntax How it looks rendered
Bad ( \frac{1}{2} ) UNIQ0a986f19d8118a5a-math-000006A5-QINU
Good \left ( \frac{1}{2} \right ) UNIQ0a986f19d8118a5a-math-000006A6-QINU

You can use various delimiters with \left and \right:

Feature Syntax How it looks rendered
Parentheses \left ( \frac{a}{b} \right ) UNIQ0a986f19d8118a5a-math-000006A7-QINU
Brackets \left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack UNIQ0a986f19d8118a5a-math-000006A8-QINU
Braces \left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace UNIQ0a986f19d8118a5a-math-000006A9-QINU
Angle brackets \left \langle \frac{a}{b} \right \rangle UNIQ0a986f19d8118a5a-math-000006AA-QINU
Bars and double bars \left | \frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \| UNIQ0a986f19d8118a5a-math-000006AB-QINU
Floor and ceiling functions: \left \lfloor \frac{a}{b} \right \rfloor \left \lceil \frac{c}{d} \right \rceil UNIQ0a986f19d8118a5a-math-000006AC-QINU
Slashes and backslashes \left / \frac{a}{b} \right \backslash UNIQ0a986f19d8118a5a-math-000006AD-QINU
Up, down and up-down arrows \left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow UNIQ0a986f19d8118a5a-math-000006AE-QINU

Delimiters can be mixed,
as long as \left and \right match

\left [ 0,1 \right )
\left \langle \psi \right |

UNIQ0a986f19d8118a5a-math-000006AF-QINU
UNIQ0a986f19d8118a5a-math-000006B0-QINU

Use \left. and \right. if you don't
want a delimiter to appear:
\left . \frac{A}{B} \right \} \to X UNIQ0a986f19d8118a5a-math-000006B1-QINU
Size of the delimiters \big( \Big( \bigg( \Bigg( ... \Bigg] \bigg] \Big] \big]

UNIQ0a986f19d8118a5a-math-000006B2-QINU

\big\{ \Big\{ \bigg\{ \Bigg\{ ... \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle

UNIQ0a986f19d8118a5a-math-000006B3-QINU

\big\| \Big\| \bigg\| \Bigg\| ... \Bigg| \bigg| \Big| \big| UNIQ0a986f19d8118a5a-math-000006B4-QINU
\big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor ... \Bigg\rceil \bigg\rceil \Big\rceil \big\rceil

UNIQ0a986f19d8118a5a-math-000006B5-QINU

\big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow ... \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow

UNIQ0a986f19d8118a5a-math-000006B6-QINU

\big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow ... \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow

UNIQ0a986f19d8118a5a-math-000006B7-QINU

\big / \Big / \bigg / \Bigg / ... \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash

UNIQ0a986f19d8118a5a-math-000006B8-QINU

Spacing

Note that TeX handles most spacing automatically, but you may sometimes want manual control.

Feature Syntax How it looks rendered
double quad space a \qquad b UNIQ0a986f19d8118a5a-math-000006B9-QINU
quad space a \quad b UNIQ0a986f19d8118a5a-math-000006BA-QINU
text space a\ b UNIQ0a986f19d8118a5a-math-000006BB-QINU
text space without PNG conversion a \mbox{ } b UNIQ0a986f19d8118a5a-math-000006BC-QINU
large space a\;b UNIQ0a986f19d8118a5a-math-000006BD-QINU
medium space a\>b [not supported]
small space a\,b UNIQ0a986f19d8118a5a-math-000006BE-QINU
no space ab UNIQ0a986f19d8118a5a-math-000006BF-QINU
small negative space a\!b UNIQ0a986f19d8118a5a-math-000006C0-QINU

Align with normal text flow

Due to the default css

UNIQ0a986f19d8118a5a-pre-000006C1-QINU

an inline expression like UNIQ0a986f19d8118a5a-math-000006C2-QINU should look good.

If you need to align it otherwise, use UNIQ0a986f19d8118a5a-code-000006C3-QINU and play with the UNIQ0a986f19d8118a5a-code-000006C4-QINU argument until you get it right; however, how it looks may depend on the browser and the browser settings.

Also note that if you rely on this workaround, if/when the rendering on the server gets fixed in future releases, as a result of this extra manual offset your formulae will suddenly be aligned incorrectly. So use it sparingly, if at all.

Forced PNG rendering

To force the formula to render as PNG, add UNIQ0a986f19d8118a5a-code-000006C5-QINU (small space) at the end of the formula (where it is not rendered). This will force PNG if the user is in "HTML if simple" mode, but not for "HTML if possible" mode (math rendering settings in preferences).

You can also use UNIQ0a986f19d8118a5a-code-000006C6-QINU (small space and negative space, which cancel out) anywhere inside the math tags. This does force PNG even in "HTML if possible" mode, unlike UNIQ0a986f19d8118a5a-code-000006C7-QINU.

This could be useful to keep the rendering of formulae in a proof consistent, for example, or to fix formulae that render incorrectly in HTML (at one time, a^{2+2} rendered with an extra underscore), or to demonstrate how something is rendered when it would normally show up as HTML (as in the examples above).

For instance:

Syntax How it looks rendered
a^{c+2} UNIQ0a986f19d8118a5a-math-000006C8-QINU
a^{c+2} \, UNIQ0a986f19d8118a5a-math-000006C9-QINU
a^{\,\!c+2} UNIQ0a986f19d8118a5a-math-000006CA-QINU
a^{b^{c+2}} UNIQ0a986f19d8118a5a-math-000006CB-QINU (WRONG with option "HTML if possible or else PNG"!)
a^{b^{c+2}} \, UNIQ0a986f19d8118a5a-math-000006CC-QINU (WRONG with option "HTML if possible or else PNG"!)
a^{b^{c+2}}\approx 5 UNIQ0a986f19d8118a5a-math-000006CD-QINU (due to "UNIQ0a986f19d8118a5a-math-000006CE-QINU" correctly displayed, no code "\,\!" needed)
a^{b^{\,\!c+2}} UNIQ0a986f19d8118a5a-math-000006CF-QINU
\int_{-N}^{N} e^x\, dx UNIQ0a986f19d8118a5a-math-000006D0-QINU


This has been tested with most of the formulae on this page, and seems to work perfectly.

You might want to include a comment in the HTML so people don't "correct" the formula by removing it:

UNIQ0a986f19d8118a5a-nowiki-000006D1-QINU

Color

Equations can use color:

  • UNIQ0a986f19d8118a5a-code-000006D2-QINU
    UNIQ0a986f19d8118a5a-math-000006D3-QINU
  • UNIQ0a986f19d8118a5a-code-000006D4-QINU
    UNIQ0a986f19d8118a5a-math-000006D5-QINU

See here for all named colours supported by LaTeX.

Note that color should not be used as the only way to identify something because color blind people may not be able to distinguish between the two colors. See en:Wikipedia:Manual of Style#Formatting issues.

Examples

Quadratic Polynomial

UNIQ0a986f19d8118a5a-math-000006D6-QINU
UNIQ0a986f19d8118a5a-nowiki-000006D7-QINU

Quadratic Polynomial (Force PNG Rendering)

UNIQ0a986f19d8118a5a-math-000006D8-QINU

UNIQ0a986f19d8118a5a-nowiki-000006D9-QINU

Quadratic Formula

UNIQ0a986f19d8118a5a-math-000006DA-QINU

UNIQ0a986f19d8118a5a-nowiki-000006DB-QINU

Tall Parentheses and Fractions

UNIQ0a986f19d8118a5a-math-000006DC-QINU

UNIQ0a986f19d8118a5a-nowiki-000006DD-QINU
UNIQ0a986f19d8118a5a-math-000006DE-QINU

UNIQ0a986f19d8118a5a-nowiki-000006DF-QINU

Integrals

UNIQ0a986f19d8118a5a-math-000006E0-QINU

UNIQ0a986f19d8118a5a-nowiki-000006E1-QINU

Summation

UNIQ0a986f19d8118a5a-math-000006E2-QINU
UNIQ0a986f19d8118a5a-nowiki-000006E3-QINU

Differential Equation

UNIQ0a986f19d8118a5a-math-000006E4-QINU

UNIQ0a986f19d8118a5a-nowiki-000006E5-QINU

Complex numbers

UNIQ0a986f19d8118a5a-math-000006E6-QINU

UNIQ0a986f19d8118a5a-nowiki-000006E7-QINU

Limits

UNIQ0a986f19d8118a5a-math-000006E8-QINU

UNIQ0a986f19d8118a5a-nowiki-000006E9-QINU

Integral Equation

UNIQ0a986f19d8118a5a-math-000006EA-QINU

UNIQ0a986f19d8118a5a-nowiki-000006EB-QINU

Example

UNIQ0a986f19d8118a5a-math-000006EC-QINU

UNIQ0a986f19d8118a5a-nowiki-000006ED-QINU

Continuation and cases

UNIQ0a986f19d8118a5a-math-000006EE-QINU

UNIQ0a986f19d8118a5a-nowiki-000006EF-QINU

Prefixed subscript

UNIQ0a986f19d8118a5a-math-000006F0-QINU

UNIQ0a986f19d8118a5a-nowiki-000006F1-QINU

Bug reports

Discussions, bug reports and feature requests should go to the Wikitech-l mailing list. These can also be filed on Mediazilla under MediaWiki extensions.

See also

External links