Grup
turkmathviki sitesinden
93.89.225.254 (Mesaj) tarafından oluşturulmuş 22:55, 29 Mart 2014 tarihli sürüm
Grup
$ G\neq \empty $ bir küme ve $ * $ G'de tanımlı bir İkili İşlem olsun. Eğer G kümesi $ * $ ikili işlemi ile aşağıdaki özellikleri gerçekliyorlarsa G'ye $ * $ ikili işlemi ile birlikte bir grup denir ve $ (G,*) $ veya $ <G,*> $ ile gösterilir.
- $ * $ ikili işlemi kapalılıdır.
- $ \forall $$ a,b,c\in G $ için $ a*(b*c)=(a*b)*c $ (Asosyatifliklik,birleşme özelliği)
- $ \exists e\in G $ öyle ki $ \forall a\in G $ için $ a*e=e*a=a $ (Etkisiz,birim eleman özelliği)
- $ \forall a \in G $ için $ a*a^{-1}=a^{-1}*a=e $ olacak biçimde $ \exists a^{-1} \in G $ olmalıdır. (Ters eleman özelliği)
Eğer $ \forall a,b \in G $ için $ a*b=b*a $ (Değişme,komütatiflik özelliği) varsa $ <G,*> $ grubuna değişmeli grup veya Abel grubu denir. G,kümesi üzerinde $ * $ ikili işleminin sadece birleşme özelliği varsa $ <G,*> $ ikilisine yarı-grup,etkisiz elemana sahip yarı-grubada monoid denir.
Genel Grup Örnekleri
- $ <\mathbb{N},+> $ monoid (Toplamsal tersleri yoktur.)
- $ <\mathbb{Z},+> $ Abel grubu.
- $ <\mathbb{Z},.> $ monoid (çarpımsal tersleri yoktur.)
- $ <\mathbb{Q},+> $ Abel grubu.
- $ <\mathbb{R},+> $ Abel grubu.