Türkiye'deki Matematiksel Etkinlikler
Ders Serisi Lectures on Abelian Varieties with Complex Multiplication 04 Mayıs 2015 - 07 Mayıs 2015IMBM Seminar Room, Bogazici University South Campus
May 4,Monday, 13:00, IMBM Seminar Room, Bogazici University South Campus
Cebirsel Geometri Speaker: Ekin Ozman, Boğaziçi University Title: Abelian Varieties and Complex Multiplication Abstract: This talk will be about the basics of Abelian Varieties and complex multiplication(CM). After defining these terms, we will continue with the discussion of good and bad reduction of CM abelian varieties. The talk should be accessible to students and will introduce the notions needed in the following talks of E. Garcia and R. Newton. May 6, Wednesday, 13:00, IMBM Seminar Room, Bogazici University South Campus Speaker: Elisa Lorenzo Garcia, Leiden University Title: A Gross-Zagier formula and some generalizations. Abstract: The aim of this talk is to introduce the original results of Gross and Zagier about the factorization of products of differences of singular moduli. We will also describe some generalizations to the problem for CM curves of genus 2 due to the work of Goren, Lauter and Viray. These results motivate the partial generalizations for genus 3 that R. Newton will explain in the following talk. May 7, Thursday, 13:00, IMBM Seminar Room, Bogazici University South Campus Speaker: Rachel Newton, Max Planck Institute for Mathematics, Bonn Title: Bad reduction of genus 3 curves with complex multiplication. Abstract: If we take a polynomial defining a curve and reduce its coefficients modulo a prime, what happens to the curve? There are two kinds of behaviour: either the curve remains irreducible, or it breaks down into multiple components. We call the latter case 'bad reduction'. Cryptographers need a supply of curves with good reduction in order to build secure encryption algorithms. Complex multiplication (or CM) is an additional structure which allowed Goren and Lauter to give a bound on the primes of bad reduction for curves of genus 2 with CM. I will describe a partial generalisation of this work to curves of genus 3 with CM. This is joint work with I. Bouw, J. Cooley, K. Lauter, E. Lorenzo Garcia, M. Manes and E. Ozman. ekin.ozman@boun.edu.tr
admin 20.03.2020 |
Akademik biriminizin ya da çalışma grubunuzun ülkemizde gerçekleşen etkinliklerini, ilan etmek istediğiniz burs, ödül, akademik iş imkanlarını veya konuk ettiğiniz matematikçileri basit bir veri girişi ile kolayca turkmath.org sitesinde ücretsiz duyurabilirsiniz. Sisteme giriş yapmak için gerekli bilgileri almak ya da görüş ve önerilerinizi bildirmek için iletişime geçmekten çekinmeyiniz. Katkı verenler listesi için tıklayınız.
Özkan Değer ozkandeger@gmail.com
31. Journees Arithmetiques Konferansı Organizasyon Komitesi
Web sitesinin masraflarının karşılanması ve hizmetine devam edebilmesi için siz de bağış yapmak, sponsor olmak veya reklam vermek için lütfen iletişime geçiniz.