turkmath.org

Türkiye'deki Matematiksel Etkinlikler


05 Ocak 2016, 14:00


İstanbul Üniversitesi Matematik Bölümü Seminerleri

Reflexivity and hyperreflexivity of bounded $n$-cocycle spaces and application to convolution operators

Ebrahim Samei
Saskatchewan Üniversitesi, Kanada

We introduced the concept of strong property $\mathbb{B}$ with a constant for Banach algebras and, by applying certain analysis on the Fourier algebra of a unit circle, we show that all $C^*$-algebras and group algebras have the strong property $\mathbb{B}$ with a constant given by $288\pi(1+\sqrt{2})$. We then use this result to find a concrete upper bound for the hyperreflexivity constant of certain spaces of bounded $n$-cocycles from $A$ into $X$, where $A$ is a $C^*$-algebra or the group algebra of a group with an open subgroup of polynomial growth and $X$ is a Banach $A$-bimodule. As another application, we show that for a locally compact amenable group $G$ and $1< p< \infty $, the space $CV_P(G)$ of convolution operators on $L^p(G)$ are hyperreflexive with a constant given by $288\pi(1+\sqrt{2})$. This is the generalization of a well-known result of E. Christiensen for $p=2$. This is a joint work with Jafar Soltani Farsani.
Analiz İngilizce
Matematik Bölümü Seminer Salonu

admin 20.03.2020


Yaklaşan Seminerler Seminer Arşivi
 

İLETİŞİM

Akademik biriminizin ya da çalışma grubunuzun ülkemizde gerçekleşen etkinliklerini, ilan etmek istediğiniz burs, ödül, akademik iş imkanlarını veya konuk ettiğiniz matematikçileri basit bir veri girişi ile kolayca turkmath.org sitesinde ücretsiz duyurabilirsiniz. Sisteme giriş yapmak için gerekli bilgileri almak ya da görüş ve önerilerinizi bildirmek için iletişime geçmekten çekinmeyiniz. Katkı verenler listesi için tıklayınız.

Özkan Değer ozkandeger@gmail.com

DESTEK VERENLER

ja2019

31. Journees Arithmetiques Konferansı Organizasyon Komitesi

Web sitesinin masraflarının karşılanması ve hizmetine devam edebilmesi için siz de bağış yapmak, sponsor olmak veya reklam vermek için lütfen iletişime geçiniz.

ONLİNE ZİYARETÇİLER

©2013-2024 turkmath.org
Tüm hakları saklıdır