Türkiye'deki Matematiksel Etkinlikler
27 Nisan 2017, 16:00 TED Üniversitesi Matematik Bölümü SeminerleriIndependently Weighted Value Difference Metric (IWVDM) Fatih Ortakaya
The majority of the difference metrics used in categorical classification algorithms do not take the dependence structure among attributes into account. Some of these metrics even make strong assumptions on attribute independence which are not realistic for many real-world datasets. In addition, these metrics do not consider attribute importance on the class variable. In this study, a new difference metric is proposed which is named as Independently Weighted Value Difference Metric (IWVDM). IWVDM includes an embedded Incremental Feature Selection (IFS) phase and a Data Compression (DC) phase. The proposed metric does not require attribute independence and it introduces a weighting procedure for attributes depending on the information that they possess on the class variable. A series of experiments is conducted using 30 UCI benchmark datasets for comparing the efficiency of IWVDM with Overlap Metric (OM), Value Difference Metric (VDM) and Frequency Difference Metric (FDM). Experimental results show the superiority of IWVDM over these three metrics.
İstatistik İngilizce TED Üniversitesi, A216 Ek Dosya İlgili Web Bağlantısı billurk 20.03.2020 |
Akademik biriminizin ya da çalışma grubunuzun ülkemizde gerçekleşen etkinliklerini, ilan etmek istediğiniz burs, ödül, akademik iş imkanlarını veya konuk ettiğiniz matematikçileri basit bir veri girişi ile kolayca turkmath.org sitesinde ücretsiz duyurabilirsiniz. Sisteme giriş yapmak için gerekli bilgileri almak ya da görüş ve önerilerinizi bildirmek için iletişime geçmekten çekinmeyiniz. Katkı verenler listesi için tıklayınız.
Özkan Değer ozkandeger@gmail.com
31. Journees Arithmetiques Konferansı Organizasyon Komitesi
Web sitesinin masraflarının karşılanması ve hizmetine devam edebilmesi için siz de bağış yapmak, sponsor olmak veya reklam vermek için lütfen iletişime geçiniz.