Türkiye'deki Matematiksel Etkinlikler
04 Mayıs 2017, 15:00 Mimar Sinan Güzel Sanatlar Üniversitesi Matematik Bölümü SeminerleriOn a conjecture of Morgan and Mullen Giorgos Kapetanakis
Let $F_q$ be the finite field of cardinality $q$ and $F_{q^n}$ its extension of degree $n$, where
$q$ is a prime power and $n$ is a positive integer. A generator of the multiplicative group $F_{q^n}^*$ is called primitive. Besides their theoretical interest, primitive
elements of finite fields are widely used in various applications, including cryptographic schemes, such as the Diffieellman key exchange.
An $F_{q}$-normal basis of $F_{q^n}$ is an $F_{q}$-basis of $F_{q^n}$ of the form $\{x, x^q, . . . , x^{q^{n−1}}\}$
and the element $x\in F_{q^n}$ is called normal over $F_{q}$. These bases bear computational advantages for finite field arithmetic, so they have numerous applications,
mostly found in coding theory and cryptography. An element of $F_{q^n}$ that is simultaneously normal over $F_{q^l}$ for all $l|n$ is called completely normal over $F_{q}$.
It is well-known that primitive and normal elements exist for every $q$ and $n$.
The existence of elements that are simultaneously primitive and normal is also
well-known for every $q$ and $n$.
Further, it is also known that for all q and n there exist completely normal
elements of $F_{q^n}$ over $F_{q}$. Morgan and Mullen [Util. Math., 49:21–43, 1996],
took the next step and conjectured that for any $q$ and $n$, there exists a primitive
completely normal element of $F_{q^n}$ over $F_{q}$.
In order to support their claim, they provided examples for such elements
for all pairs $(q, n)$ with $q\leq 97$ and $q^n < 10^{50}$. This conjecture is yet to be established for arbitrary $q$ and $n$, but instead we have partial results, covering special
types of extensions. Recently, Hachenberger [Des. Codes Cryptogr., 80(3):577–
586, 2016] using elementary methods, proved the validity of the Morgan-Mullen
conjecture for $q\leq n^3$ and $n\geq 37$.
In this work, we use character sum techniques and prove the validity of the
Morgan-Mullen conjecture for all $q$ and $n$, provided that $q > n4. In the talk, the
previous results will briefly be presented, our proof will be outlined and possible
improvements will be discussed.
Cebir İngilizce Seminar room, Bomonti Campus, MSGSÜ admin 20.03.2020 |
Akademik biriminizin ya da çalışma grubunuzun ülkemizde gerçekleşen etkinliklerini, ilan etmek istediğiniz burs, ödül, akademik iş imkanlarını veya konuk ettiğiniz matematikçileri basit bir veri girişi ile kolayca turkmath.org sitesinde ücretsiz duyurabilirsiniz. Sisteme giriş yapmak için gerekli bilgileri almak ya da görüş ve önerilerinizi bildirmek için iletişime geçmekten çekinmeyiniz. Katkı verenler listesi için tıklayınız.
Özkan Değer ozkandeger@gmail.com
31. Journees Arithmetiques Konferansı Organizasyon Komitesi
Web sitesinin masraflarının karşılanması ve hizmetine devam edebilmesi için siz de bağış yapmak, sponsor olmak veya reklam vermek için lütfen iletişime geçiniz.