turkmath.org

Türkiye'deki Matematiksel Etkinlikler


20 Mart 2019, 13:30


Boğaziçi Üniversitesi Matematik Konuşmaları

Approximation of the Exit Probability of a Stable Markov Modulated Constrained Random Walk

Ali Devin Sezer
ODTÜ, Türkiye

Let X be the constrained random walk on Z 2 + having increments (1,0), (−1,1), (0,−1) with jump probabilities λ(Mk), μ1(Mk), and μ2(Mk) where {Mk} is an irreducible aperiodic finite state Markov chain. X represents the lengths of two tandem queues with arrival rate λ(Mk), and service rates μ1(Mk), and μ2(Mk). We assume that the average arrival rate with respect to the stationary measure of M is less than the average service rates, i.e., X is assumed stable. Let τn be the first time X hits the line ∂An = {x : x(1) + x(2) = n}, i.e., the first time the sum of the components of X equals n. Let Y be the random walk on Z × Z+ (i.e., constrained only on ∂2 = {y ∈ Z × Z+ : y(2) = 0}) again modulated by M and having increments (−1,0), (1,1), (0,−1) with probabilities λ(Mk), μ1(Mk), and μ2(Mk). Let B = {y ∈ Z 2 : y(1) = y(2)} and let τ be the first time Y hits B. Let Tn : Z 2 7→ Z 2 be the affine map y 7→ (n − y(1), y(2) and let m denote the initial point of M. For x ∈ R 2 +, x(1) + x(2) < 1, x(1) > 0, and xn = bnxc, we show that P(Tn(xn),m) (τ < ∞) approximates P(xn,m) (τn < τ0) with exponentially vanishing relative error as n → ∞. For the analysis we define a characteristic matrix in terms of the jump probabilities of (X,M). The 0-level set of the characteristic polynomial of this matrix defines the characteristic surface H ⊂ C 2 for the problem. Conjugate points on H and the associated eigenvectors of the characteristic matrix are used to define (sub/super) harmonic functions which play a fundamental role both in our analysis and the computation / approximation of P(y,m) (τ < ∞).
Olasılık Teorisi İngilizce
TB 130, Bogaziçi University

admin 20.03.2020


Yaklaşan Seminerler Seminer Arşivi
 

İLETİŞİM

Akademik biriminizin ya da çalışma grubunuzun ülkemizde gerçekleşen etkinliklerini, ilan etmek istediğiniz burs, ödül, akademik iş imkanlarını veya konuk ettiğiniz matematikçileri basit bir veri girişi ile kolayca turkmath.org sitesinde ücretsiz duyurabilirsiniz. Sisteme giriş yapmak için gerekli bilgileri almak ya da görüş ve önerilerinizi bildirmek için iletişime geçmekten çekinmeyiniz. Katkı verenler listesi için tıklayınız.

Özkan Değer ozkandeger@gmail.com

DESTEK VERENLER

ja2019

31. Journees Arithmetiques Konferansı Organizasyon Komitesi

Web sitesinin masraflarının karşılanması ve hizmetine devam edebilmesi için siz de bağış yapmak, sponsor olmak veya reklam vermek için lütfen iletişime geçiniz.

ONLİNE ZİYARETÇİLER

©2013-2024 turkmath.org
Tüm hakları saklıdır