turkmath.org

Türkiye'deki Matematiksel Etkinlikler


27 Şubat 2020, 16:00


Mimar Sinan Güzel Sanatlar Üniversitesi Matematik Bölümü Genel Seminerleri

On Domination Number of Cayley Graphs

Sibel Özkan
Gebze Technical University, Türkiye

A dominating set of a graph $\Gamma$ is a subset $D$ of $V$, such that every vertex not in $D$ is adjacent to at least one member of $D$. The domination number $\gamma(\Gamma)$ is the minimum cardinality of a dominating set for $\Gamma$. The problem of determining the minimum number of queens that can be placed on a chessboard so that all squares are either attacked by a queen or are occupied by a queen is considered as the origin of the study of dominating sets in graphs. Concept of the domination number is defined for the first time -although with the name ''coefficient of external stability"- in Berge's graph theory book from 1962. There are over two thousand academic papers and several books on the topic since then. Let $G$ denote a finite group with identity 1 and let $S$ denote an inverse-closed subset of $G \backslash\{1\}$. The Cayley graph Cay($G;S$) of the group $G$ with respect to the connection set $S$ is the graph with vertex-set $G$, in which $g \in G$ is adjacent with $h \in G$ if and only if $h=gs$ for some $s \in S$. The definition of Cayley graph was introduced by A. Cayley in 1878. It is related to many practical problems, and also to some classical problems in pure mathematics.Since finding the domination number is NP-complete for arbitrary graphs, it is natural to ask for bounds on the domination number related to other graph parameters, and also to ask for exact results on specific graph classes. Here we will focus on Cayley graphs. There are limited results on the domination number and finding efficient dominating sets on Cayley graphs on certain groups for certain connection sets. Here, we carry these investigations further and also study different types of dominations. Results given in this talk is due to joint works with Cafer Caliskan and Stefko Miklavic, carried under the TUBITAK - ARRS bilateral project with project number 115F586.
Çizge Teorisi İngilizce
Bomonti Campus, seminar room
Ek Dosya

msgu 20.03.2020


Yaklaşan Seminerler Seminer Arşivi
 

İLETİŞİM

Akademik biriminizin ya da çalışma grubunuzun ülkemizde gerçekleşen etkinliklerini, ilan etmek istediğiniz burs, ödül, akademik iş imkanlarını veya konuk ettiğiniz matematikçileri basit bir veri girişi ile kolayca turkmath.org sitesinde ücretsiz duyurabilirsiniz. Sisteme giriş yapmak için gerekli bilgileri almak ya da görüş ve önerilerinizi bildirmek için iletişime geçmekten çekinmeyiniz. Katkı verenler listesi için tıklayınız.

Özkan Değer ozkandeger@gmail.com

DESTEK VERENLER

ja2019

31. Journees Arithmetiques Konferansı Organizasyon Komitesi

Web sitesinin masraflarının karşılanması ve hizmetine devam edebilmesi için siz de bağış yapmak, sponsor olmak veya reklam vermek için lütfen iletişime geçiniz.

ONLİNE ZİYARETÇİLER

©2013-2024 turkmath.org
Tüm hakları saklıdır