turkmath.org

Türkiye'deki Matematiksel Etkinlikler


16 Nisan 2021, 14:00


Gebze Teknik Üniversitesi Matematik Bölümü Genel Seminerleri

Dynamic Hardy, Copson, Bennett and Leindler type inequalities and their complements in delta, nabla and diamond alpha senses

Zeynep Kayar
Van Yüzüncü Yıl Üniversitesi, Türkiye

Hardy's distinguished inequalities involving series and integrals [1, 2], which are called discrete and continuous inequalities, respectively, led to many papers dealing with their alternative proofs, various generalizations, improvements and applications. Among numerous mathematicians interested in such inequalities, we choose to mention (related to our work) Copson, Bennett and Leindler. Besides Hardy's discrete and continuous inequalities (together with their generalizations, we may call all of them as Hardy-Copson inequalities), their reverse versions, which are called Bennett-Leindler inequalities, are found to be attractive to mathematicians who obtain extended and refined inequalities in reverse directions. In order to avoid proving the results twice, once for continuous functions and once for functions defined on discrete sets, delta and nabla time scale unifications of these inequalities have appeared in the literature as well. Since these unifications are not adequate in the theoretical research of some differential and difference equations and in certain computational applications such as adaptive computing and multiscale methods [3], the diamond alpha, $\diamond_{\alpha},$ calculus, which utilizes convex linear combinations of delta and nabla derivatives and integrals, has been introduced by Sheng et al. [3]. In this talk we present some important steps of the development of Hardy-Copson and Bennett-Leindler inequalities with their various modifications and extensions. In addition to discrete and continuous generalizations, we show delta, nabla and diamond alpha unifications of Hardy-Copson and Bennett-Leindler inequalities as well as complements of these unifications. 

This is a joint work with Billur Kaymakçalan

References
[1] G. H. Hardy, Notes on a theorem of Hilbert. Math. Z. 6 (1920), no. 3-4, $314-317$
[2] G. H. Hardy, Notes on some points in the integral calculus, LX. An inequality between integrals. Messenger Math. $54(1925), 150-156$.
[3] Q. Sheng, M. Fadag, J. Henderson, J. M. Davis, An exploration of combined dynamic derivatives on time scales and their applications. Nonlinear Anal. Real World Appl. $7(2006)$, no. $3,395-413 .$

Link to the seminar is:

https://teams.microsoft.com/l/meetup-join/19%3a0ae91f7b86a24e8fa1d818a6f74b22a1%40thread.tacv2/1617974725596?context=%7b%22Tid%22%3a%22066690f2-a8a6-4889-852e-124371dcbd6f%22%2c%22Oid%22%3a%22a343f6fd-86f8-4abe-95cf-3c7f4ad5f0ca%22%7d

Analiz İngilizce
Microsoft Teams Çevrimiçi Platformu

gtumatematik 12.04.2021


Yaklaşan Seminerler Seminer Arşivi
 

İLETİŞİM

Akademik biriminizin ya da çalışma grubunuzun ülkemizde gerçekleşen etkinliklerini, ilan etmek istediğiniz burs, ödül, akademik iş imkanlarını veya konuk ettiğiniz matematikçileri basit bir veri girişi ile kolayca turkmath.org sitesinde ücretsiz duyurabilirsiniz. Sisteme giriş yapmak için gerekli bilgileri almak ya da görüş ve önerilerinizi bildirmek için iletişime geçmekten çekinmeyiniz. Katkı verenler listesi için tıklayınız.

Özkan Değer ozkandeger@gmail.com

DESTEK VERENLER

ja2019

31. Journees Arithmetiques Konferansı Organizasyon Komitesi

Web sitesinin masraflarının karşılanması ve hizmetine devam edebilmesi için siz de bağış yapmak, sponsor olmak veya reklam vermek için lütfen iletişime geçiniz.

ONLİNE ZİYARETÇİLER

©2013-2024 turkmath.org
Tüm hakları saklıdır