Türkiye'deki Matematiksel Etkinlikler
07 Aralık 2022, 13:40 Sabancı Üniversitesi Cebir SeminerleriPreserver Problems over a Finite Field and Graph Cores Marko Orel In linear algebra, a typical preserver problem demands a characterization of all maps $\Phi:M \rightarrow M$ on some set $M$ of matrices that preserve some given function, relation or a subset. Often there are some additional assumptions on $\Phi$ and/or $M$. Historically, first types of such problems assumed that $M$ is a vector space and that $\Phi$ is linear. Classical assumptions on $\Phi$ are also bijectiveness, injectiveness and surjectiveness. One of the most influential results in this area are the Hua’s fundamental theorems on various types of matrices. In the context of the set $M_{m\times n}(\mathbb{F}) = \lbrace m\times n \,\,\,$ matrices with coefficients from the field $\,\,\, \mathbb{F}\rbrace$ such a result characterizes all bijective maps $\Phi:M_{m\times n}(\mathbb{F}) \rightarrow M_{m\times n}(\mathbb{F})$ that satisfy $rank(A-B)= 1 \Longleftrightarrow rank(\Phi(A)-\Phi(B))= 1$. It turns out that many other preserver problems can be solved by applying an appropriate ‘Hua’s theorem’. Consequently, mathematicians started to generalize such theorems by reducing their assumptions. Whenever $\Phi :M \rightarrow M$ preserves some relation (like in Hua’s theorem), the corresponding preserver problem demands the characterization of all endomorphisms of the corresponding graph. In the context of Hua’s theorem above, the problem actually asks to characterize all automorphisms of the graph with the vertex set $V=M_{m\times n}(\mathbb{F})$ and the edge set $E=\lbrace \lbrace A, B \rbrace : rank(A-B)= 1\rbrace$. Consequently, the theory of graph homomorphisms and cores becomes useful to study preserver problems. This is especially true in the case $\mathbb{F}=\mathbb{F}_{q}$ is a finite field, since graph theory is much more developed for finite graphs (as it is for infinite graphs). In the talk I will present the interplay between preserver problems and graph cores. I will also provide some examples where the two areas merge with finite geometry. NOT: To request the event link, please send a message to mlavrauw@sabanciuniv.edu OR mmsadek@sabanciuniv.edu Çizge Teorisi İngilizce Zoom botan 02.12.2022 |
Akademik biriminizin ya da çalışma grubunuzun ülkemizde gerçekleşen etkinliklerini, ilan etmek istediğiniz burs, ödül, akademik iş imkanlarını veya konuk ettiğiniz matematikçileri basit bir veri girişi ile kolayca turkmath.org sitesinde ücretsiz duyurabilirsiniz. Sisteme giriş yapmak için gerekli bilgileri almak ya da görüş ve önerilerinizi bildirmek için iletişime geçmekten çekinmeyiniz. Katkı verenler listesi için tıklayınız.
Özkan Değer ozkandeger@gmail.com
31. Journees Arithmetiques Konferansı Organizasyon Komitesi
Web sitesinin masraflarının karşılanması ve hizmetine devam edebilmesi için siz de bağış yapmak, sponsor olmak veya reklam vermek için lütfen iletişime geçiniz.